The litter decomposition of fallen leaves and branches from sub-alpine Quercus aquifolioides of central Yunnan Plateau under simulated nitrogen deposition

XING Jinmei, WANG Keqin, SONG Yali, FU Hongwei

JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2024, Vol. 48 ›› Issue (4) : 191-199.

PDF(2089 KB)
PDF(2089 KB)
JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2024, Vol. 48 ›› Issue (4) : 191-199. DOI: 10.12302/j.issn.1000-2006.202209065

The litter decomposition of fallen leaves and branches from sub-alpine Quercus aquifolioides of central Yunnan Plateau under simulated nitrogen deposition

Author information +
History +

Abstract

【Objective】Increased nitrogen (N) deposition affects carbon (C) and N availability by affecting the litter decomposition process, after which it affects the C-nutrient balance of the biogeochemical cycle. In this study, the nylon mesh bag method was used to study the decomposition rate and nutrient content changes of Quercus aquifolioides litter under simulated N deposition, providing a reference for an effective Q. aquifolioides forest ecosystem management.【Method】The in situ litter decomposition test was carried out in the Q. aquifolioides forest of Mopanshan in Xinping County, central Yunnan Province. Four N levels were applied using the nylon mesh bag method, with urea (CH4N2O) as the N source for in situ decomposition of litter and N deposition treatment. The four N deposition levels were: control [CK, 0 g/(m2·a)], low N [LN, 10 g/(m2·a)], medium N [MN, 20 g/(m2·a)] and high N [HN, 25 g/(m2·a)]. Leaf litter and twig mass remaining, lignin, cellulose, and C, N, P and K contents were then measured.【Result】① After one year of decomposition, the N deposition treatment significantly increased the mass remaining rate (P<0.05) of leaf litter (0.84%-3.87%) and twig (1.67%-3.30%). The litter decomposition was inhibited, and the inhibition intensity was proportional to N content application. ② Variation coefficients of leaf and twig litter decomposition were 0.271-0.368 and 0.167-0.218 kg/(kg·a), respectively. The lhe C/N (69.02) and lignin/N (54.65) of twig litter were significantly higher compared with leaf litter (52.09 and 44.42, respectively). Leaf decomposition rate was faster compared with that of twig. ③ The chemical composition of the litter affected its mass remaining rate, which was negatively correlated with N and P contents of leaf and twig litters, and positively correlated with C, cellulose, C/N, C/P, lignin/N and cellulose/N.【Conclusion】The N deposition inhibits litter decomposition, and this effect is significantly enhanced by increased nutrient content. Initial nutrient content effects nutrient retention and litter release processes, among which N level, C/N and lignin/N are important influencing factors.

Key words

leaf litter / twig litter / decomposition rate / lignin / cellulose / central Yunnan Plateau / Quercus aquifolioides / N deposition

Cite this article

Download Citations
XING Jinmei , WANG Keqin , SONG Yali , et al. The litter decomposition of fallen leaves and branches from sub-alpine Quercus aquifolioides of central Yunnan Plateau under simulated nitrogen deposition[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2024, 48(4): 191-199 https://doi.org/10.12302/j.issn.1000-2006.202209065

References

[1]
岳可欣, 龚吉蕊, 于上媛, 等. 氮添加下典型草原凋落物质量和土壤酶活性对凋落物分解速率的影响[J]. 草业学报, 2020, 29(6):71-82.
YUE K X, GONG J R, YU S Y, et al. Effects of litter quality and soil enzyme activity on litter decomposition rate in typical grassland subject to nitrogen addition[J]. Acta Prataculturae Sin, 2020, 29(6):71-82.DOI: CNKI:SUN:CYXB.0.2020-06-006.
[2]
于美佳, 叶彦辉, 韩艳英, 等. 氮沉降对森林生态系统影响的研究进展[J]. 安徽农业科学, 2021, 49(3):19-24,27.
YU M J, YE Y H, HAN Y Y, et al. Research progress on the effects of nitrogen deposition on forest ecosystem[J]. J Anhui Agric Sci, 2021, 49(3):19-24,27.DOI: 10.3969/j.issn.0517-6611.2021.03.005
[3]
ROWE J A, LITTON C M, LEPCZYK C A, et al. Impacts of endangered seabirds on nutrient cycling in montane forest ecosystems of hawai’I[J]. Pac Sci, 2017, 71(4):495-509.DOI: 10.2984/71.4.7.
[4]
WEN Z, WANG R Y, LI Q, et al. Spatiotemporal variations of nitrogen and phosphorus deposition across China[J]. Sci Total Environ, 2022, 830:154740-154740.DOI: 10.1016/j.scitotenv.2022.154740.
[5]
汪星星, 廖文海, 许祖元, 等. 森林凋落物分解影响因素的研究进展[J]. 北方园艺, 2022(4):126-132.
WANG X X, LIAO W H, XU Z Y, et al. Research progress of influencing factors affecting forest litter decomposition[J]. North Hortic, 2022,(4):126-132.DOI: 10.11937/bfyy.20213631.
[6]
段娜, 李清河, 多普增, 等. 植物响应大气氮沉降研究进展[J]. 世界林业研究, 2019, 32(4):6-11.
DUAN N, LI Q H, DUO P Z, et al. Plant response to atmospheric nitrogen deposition:a research review[J]. World For Res, 2019, 32(4):6-11.DOI: 10.13348/j.cnki.sjlyyj.2019.0029.y.
[7]
ZHOU S X, HUANG C D, HAN B H, et al. Simulated nitrogen deposition significantly suppresses the decomposition of forest litter in a natural evergreen broad-leaved forest in the Rainy Area of western China[J]. Plant Soil, 2017, 420(1):135-145.DOI: 10.1007/s11104-017-3383-x.
[8]
BERG B, LÖNN M, NI X Y, et al. Decomposition rates in late stages of Scots pine and Norway spruce needle litter:influence of nutrients and substrate properties over a climate gradient[J]. For Ecol Manag, 2022, 522(4):1-12.DOI: 10.1016/j.foreco.2022.120452.
[9]
ZHANG T A, LUO Y Q, CHEN H Y H, et al. Responses of litter decomposition and nutrient release to N addition:a meta-analysis of terrestrial ecosystems[J]. Appl Soil Ecol, 2018, 128:35-42.DOI: 10.1016/j.apsoil.2018.04.004.
[10]
ZHAO F Z, WANG J Y, ZHANG L, et al. Understory plants regulate soil respiration through changes in soil enzyme activity and microbial C,N,and P stoichiometry following afforestation[J]. Forests, 2018, 9(7):436-450.DOI: 10.3390/f9070436.
[11]
BERG B, LÖNN M. Long-term effects of climate and litter chemistry on rates and stable fractions of decomposing Scots pine and Norway spruce needle litter:a synthesis[J]. Forests, 2022, 13(1):125-140.DOI: 10.3390/f13010125.
[12]
HUANG X L, CHEN J Z, WANG D, et al. Simulated atmospheric nitrogen deposition inhibited the leaf litter decomposition of Cinnamomum migao H.W.Li in Southwest China[J]. Sci Rep, 2021, 11(1):1748-1760.DOI: 10.1038/s41598-021-81458-3.
[13]
莫江明, 薛璟花, 方运霆. 鼎湖山主要森林植物凋落物分解及其对N沉降的响应[J]. 生态学报, 2004, 24(7):1413-1420.
MO J M, XUE J H, FANG Y T. Litter decomposition and its responses to simulated N deposition for the major plants of Dinghushan forests in subtropical China[J]. Acta Ecol Sin, 2004, 24(7):1413-1420.DOI: 10.3321/j.issn:1000-0933.2004.07.015.
[14]
胡宗达, 刘世荣, 史作民, 等. 川滇高山栎林土壤氮素和微生物量碳氮随海拔变化的特征[J]. 林业科学研究, 2012, 25(3):261-268.
HU Z D, LIU S R, SHI Z M, et al. Variations of soil nitrogen and microbial biomass carbon and nitrogen of Quercus aquifolioides forest at different attitudes in Balangshan,Sichuan[J]. For Res, 2012, 25(3):261-268.DOI: 10.13275/j.cnki.lykxyj.2012.03.002.
[15]
曹丽花, 尹为玲, 刘合满, 等. 西藏东南部色季拉山主要类型森林叶片和枯落物养分含量特征[J]. 生态学报, 2019, 39(11):4029-4038.
CAO L H, YIN W L, LIU H M, et al. Stoichiometric characteristics of leaves and litter in typical forest types on Sejila Mountain,southeastern Tibet[J]. Acta Ecol Sin, 2019, 39(11):4029-4038.DOI: 10.5846/stxb201805301194.
[16]
贾钧彦. 西藏高原大气氮湿沉降研究[D]. 拉萨: 西藏大学, 2008.
JIA J Y. Study of atmospheric wet deposition of nitrogen in Tibetan Plateau[D]. Lahsa: Tibet University, 2008.
[17]
杨开军, 杨万勤, 庄丽燕, 等. 四川盆地西缘都江堰大气氮素湿沉降特征[J]. 应用与环境生物学报, 2018, 24(1):107-111.
YANG K J, YANG W Q, ZHUANG L Y, et al. Characteristics of atmospheric wet nitrogen deposition in Dujiangyan,western edge of Sichuan Basin[J]. Chin J Appl Environ Biol, 2018, 24(1):107-111.DOI: 10.19675/j.cnki.1006-687x.2017.04001.
[18]
李仰征, 雷兴庆, 薛晓辉, 等. 纱帽山不同海拔大气氮湿沉降通量差异及递变规律的数学模拟[J]. 环境科学学报, 2020, 40(9):3180-3189.
LI Y Z, LEI X Q, XUE X H, et al. Statistical modeling of variability of atmospheric nitrogen wet deposition fluxes along altitudinal gradients of Shamao Mountain[J]. Acta Sci Circumstantiae, 2020, 40(9):3180-3189.DOI: 10.13671/j.hjkxxb.2020.0270.
[19]
余功友, 杨常亮, 刘楷, 等. 云南阳宗海大气氮、磷沉降特征[J]. 湖泊科学, 2017, 29(5):1134-1142.
YU G Y, YANG C L, LIU K, et al. Atmospheric deposition of nitrogen and phosphorous in Lake Yangzonghai,Yunnan Province[J]. J Lake Sci, 2017, 29(5):1134-1142.DOI: 10.18307/2017.0511.
[20]
YANG R, HAYASHI K, ZHU B, et al. Atmospheric NH3 and NO2 concentration and nitrogen deposition in an agricultural catchment of eastern China[J]. Sci Total Environ, 2010, 408(20):4624-4632.DOI: 10.1016/j.scitotenv.2010.06.006.
[21]
鲍士旦. 土壤农化分析. 3版[M]. 北京: 中国农业出版社, 2000.
BAO S D. Agrochemical analysis of soil[M]. 3rd ed. Beijing: China Agriculture Press, 2000.
[22]
张毓涛, 李吉玫, 李翔, 等. 模拟氮沉降对天山云杉凋落叶分解及其养分释放的影响[J]. 干旱区研究, 2016, 33(5):966-973.
ZHANG Y T, LI J M, LI X, et al. Effects of simulated nitrogen deposition on decomposition and nutrient release of leaf litter of Picea schrenkian[J]. Arid Zone Research, 2016, 33(5):966-973.DOI: 10.13866/j.azr.2016.05.08.
[23]
涂利华, 胡红玲, 胡庭兴, 等. 华西雨屏区亮叶桦凋落叶分解对模拟氮沉降的响应[J]. 植物生态学报, 2012, 36(2):99-108.
TU L H, HU H L, HU T X, et al. Response of Betula luminifera leaf litter decomposition to simulated nitrogen deposition in the Rainy Area of west China[J]. Chin J Plant Ecol, 2012, 36(2):99-108.DOI: 10.3724/SP.J.1258.2012.00099.
[24]
李仁洪. 华西雨屏区慈竹林凋落物分解、养分释放及其对模拟氮沉降的响应[D]. 雅安: 四川农业大学, 2009.
LI R H. Litter decomposition,nutrient release and their response to simulated nitrogen deposition in Neosinocalamus affinis stands in Rainy Area of west China[D]. Yaan: Sichuan Agricultural University, 2009.
[25]
OLSON J S. Energy storage and the balance of producers and decomposers in ecological systems[J]. Ecology, 1963, 44(2):322-331.DOI: 10.2307/1932179.
[26]
周世兴, 黄从德, 向元彬, 等. 模拟氮沉降对华西雨屏区天然常绿阔叶林凋落物木质素和纤维素降解的影响[J]. 应用生态学报, 2016, 27(5):1368-1374.
ZHOU S X, HUANG C D, XIANG Y B, et al. Effects of simulated nitrogen deposition on lignin and cellulose degradation of foliar litter in natural evergreen broad-leaved forest in Rainy Area of western China[J]. Chin J Appl Ecol, 2016, 27(5):1368-1374.DOI: 10.13287/j.1001-9332.201605.004.
[27]
STEVENS C J. How long do ecosystems take to recover from atmospheric nitrogen deposition?[J]. Biol Conserv, 2016, 200:160-167.DOI: 10.1016/j.biocon.2016.06.005.
[28]
涂利华, 戴洪忠, 胡庭兴, 等. 模拟氮沉降对华西雨屏区撑绿杂交竹凋落物分解的影响[J]. 生态学报, 2011, 31(5):1277-1284.
TU L H, DAI H Z, HU T X, et al. Effect of simulated nitrogen deposition on litter decomposition in a Bambusa pervariabilis × Dendrocala mopsi plantation,Rainy Area of west China[J]. Acta Ecol Sin, 2011, 31(5):1277-1284.DOI: CNKI:SUN:STXB.0.2011-05-010.
[29]
马慧君, 张雅坤, 许文欢, 等. 模拟氮沉降对杨树人工林土壤微生物群落碳源利用类型的影响[J]. 南京林业大学学报(自然科学版), 2017, 41(5):1-6.
MA H J, ZHANG Y K, XU W H, et al. Effects of nitrogen deposition on soil microbial community C?source metabolism of poplar plantation[J]. J Nanjing For Univ (Nat Sci Ed), 2017, 41(5):1-6.DOI: 10.3969/j.issn.1000-2006.201606014.
[30]
KEISER A D, BRADFORD M A. Climate masks decomposer influence in a cross-site litter decomposition study[J]. Soil Biol Biochem, 2017, 107(S1):180-187.DOI: 10.1016/j.soilbio.2016.12.022.
[31]
VANNI M J, FLECKER A S, HOOD J M, et al. Stoichiometry of nutrient recycling by vertebrates in a tropical stream:linking species identity and ecosystem processes[J]. Ecol Lett, 2002, 5(2):285-293.DOI: 10.1046/j.1461-0248.2002.00314.x.
[32]
铁烈华, 张仕斌, 熊梓岑, 等. 华西雨屏区常绿阔叶林凋落叶分解过程中木质素降解对模拟氮、硫沉降的响应[J]. 林业科学研究, 2019, 32(2):25-31.
TIE L H, ZHANG S B, XIONG Z C, et al. Effects of simulated nitrogen and sulfur deposition on lignin degradation during foliar litter decomposition in evergreen broad-leaved forest in the Rainy Area of west China[J]. For Res, 2019, 32(2):25-31.DOI: 10.13275/j.cnki.lykxyj.2019.02.004.
[33]
铁烈华, 符饶, 张仕斌, 等. 华西雨屏区常绿阔叶林凋落叶分解过程中纤维素降解对模拟氮、硫沉降的响应[J]. 应用与环境生物学报, 2019, 25(1):16-22.
TIE L H, FU R, ZHANG S B, et al. Effects of simulated nitrogen and sulfur deposition on cellulose degradation during foliar litter decomposition in evergreen broad-leaved forest in the Rainy Area of west China[J]. Chin J Appl Environ Biol, 2019, 25(1):16-22.DOI: 10.19675/j.cnki.1006-687x.2018.03014.
[34]
BERG B, STAAF H, WESSEN B. Decomposition and nutrient release in needle litter from nitrogen-fertilized Scots pine (Pinus sylvestris) stands[J]. Scand J For Res, 1987, 22(10):399-415.DOI: 10.1080/02827588709382478.
[35]
林成芳, 彭建勤, 洪慧滨, 等. 氮、磷养分有效性对森林凋落物分解的影响研究进展[J]. 生态学报, 2017, 37(1):54-62.
LIN C F, PENG J Q, HONG H B, et al. Effect of nitrogen and phosphorus availability on forest litter decomposition[J]. Acta Ecol Sin, 2017, 37(1):54-62.DOI: 10.5846/stxb201608091636.
[36]
GARCÍA-PALACIOS P, MCKIE B G, HANDA I T, et al. The importance of litter traits and decomposers for litter decomposition:a comparison of aquatic and terrestrial ecosystems within and across biomes[J]. Funct Ecol, 2016, 30(5):819-829.DOI: 10.1111/1365-2435.12589.
PDF(2089 KB)

Accesses

Citation

Detail

Sections
Recommended
The full text is translated into English by AI, aiming to facilitate reading and comprehension. The core content is subject to the explanation in Chinese.

/