Nitrogen, phosphorus contents and stoichiometric characteristics in different organs of three tree species in northeast China

SUN Huizhen, LI Shan, LIU Shanshan, WANG Xingchang

JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2024, Vol. 48 ›› Issue (5) : 147-155.

PDF(1727 KB)
PDF(1727 KB)
JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2024, Vol. 48 ›› Issue (5) : 147-155. DOI: 10.12302/j.issn.1000-2006.202210003

Nitrogen, phosphorus contents and stoichiometric characteristics in different organs of three tree species in northeast China

Author information +
History +

Abstract

【Objective】The objective of this study is to investigate the nitrogen (N) and phosphorus (P) allocation patterns in the above- and below-ground organs of three different tree species in northeast China, namely Populus davidiana, Fraxinus mandshurica and Taxus cuspidata, and to provide theoretical insights into the trade-offs and allocation strategies of nutrient distribution among tree species.【Method】Mature individuals of P. davidiana, F. mandshurica and T. cuspidata were selected as research subjects. The N and P contents in aboveground organs, i.e., leaves, twigs and belowground organs, i.e., coarse roots, fine roots, were analyzed and the allocation ratios of N and P contents in the leaves, twigs and roots were calculated. Standardized major axis regressions were employed to examine the relationships of N and P elements between aboveground (belowground) organs of three tree species and the bidirectional nutrient transport of the same elements between aboveground and belowground organs.【Result】(1)The N and P contents in the leaves of P. davidiana and F. mandshurica were similar. However, the N and P contents in the leaves of these two species were significantly higher and lower, respectively, compared to T. cuspidata (P<0.05). The twigs of T. cuspidata exhibited the highest N and P contents, while F. mandshurica had the highest P content in coarse roots and N and P contents in fine roots. The N content in coarse roots was similar among the three species. (2)The ratios of N and P contents in leaves to twigs and leaves to coarse roots were the highest in F. mandshurica and P. davidiana, respectively, while the ratios of leaves to fine roots were the lowest in F. mandshurica. (3)For P. davidiana and T. cuspidata, the aboveground and belowground organs showed an allometric and isometric relationship respectively between N and P contents, with the scaling exponent in belowground being approximately half of that in aboveground. In contrast, F. mandshurica exhibited similar scaling exponents aboveground and belowground, both exhibiting significantly greater than 1 allometric relationship. For P. davidiana, the slopes of both aboveground and belowground P in both directions are half of the corresponding N values. For T. cuspidata, the slopes of P content in the upward direction were also half of the corresponding N values, and the downward N and P relationships were not significant. For F. mandshurica, the slopes of N and P content in the upward direction were similar, whereas in the downward direction, the P content slope was approximately 2/3 of N.【Conclusion】In contrast to P. davidiana and T. cuspidata, F. mandshurica tended to allocate N and P to metabolically active organs such as leaves and fine roots. The relationships between N and P in aboveground (or belowground) organs and N and P between above- and below-ground showed distinct coordinations for F. mandshurica compared to P. davidiana and T. cuspidata.

Key words

nitrogen and phosphorus stoichiometry / nutrient allocation / inter-specific variation / Populus davidiana / Fraxinus mandshurica / Taxus cuspidate

Cite this article

Download Citations
SUN Huizhen , LI Shan , LIU Shanshan , et al. Nitrogen, phosphorus contents and stoichiometric characteristics in different organs of three tree species in northeast China[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2024, 48(5): 147-155 https://doi.org/10.12302/j.issn.1000-2006.202210003

References

[1]
SARDANS J, PEÑUELAS J. Climate and taxonomy underlie different elemental concentrations and stoichiometries of forest species: the optimum “biogeochemical niche”[J]. Plant Ecol, 2014, 215(4): 441-455. DOI:10.1007/s11258-014-0314-2.
[2]
蒋高明. 植物生理生态学[M]. 北京: 高等教育出版社, 2004: 128-132.
JIANG G M. Plant Ecophysiology[M]. Beijing: Higher Education Press, 2004: 128-132.
[3]
田地, 严正兵, 方精云. 植物生态化学计量特征及其主要假说[J]. 植物生态学报, 2021, 45(7): 682-713.
TIAN D, YAN Z B, FANG J Y. Review on characteristics and main hypotheses of plant ecological stoichiometry[J]. Chin J Plant Ecol, 2021, 45(7): 682-713. DOI: 10.17521/cjpe.2020.0331.
[4]
贺金生, 韩兴国. 生态化学计量学:探索从个体到生态系统的统一化理论[J]. 植物生态学报, 2010, 34(1): 2-6.
HE J S, HAN X G. Ecological stoichiometry: searching for unifying principles from individuals to ecosystems[J]. Chin J Plant Ecol, 2010, 34(1): 2-6. DOI: 10.3773/j.issn.1005-264x.2010.01.002.
[5]
卢建男, 刘凯军, 王瑞雄, 等. 中国荒漠植物-土壤系统生态化学计量学研究进展[J]. 中国沙漠, 2022, 42(2): 173-182.
LU J N, LIU K J, WANG R X, et al. Research advances in stoichiometry of desert plant-soil system in China[J]. J Desert Res, 2022, 42(2): 173-182. DOI: 10.7522/j.issn.1000-694X.2021.00109.
[6]
ELSER J J, FAGAN W F, DENNO R F, et al. Nutritional constraints in terrestrial and freshwater food webs[J]. Nature, 2000, 408(6812):578-580. DOI:10.1038/35046058.
[7]
陈美玲, 崔君滕, 邓蕾, 等. 黄土高原两种针叶树种不同器官水碳氮磷分配格局及其生态化学计量特征[J]. 地球环境学报, 2018, 9(1): 54-63.
CHEN M L, CUI J T, DENG L, et al. Distribution patterns and ecological stoichiometry of water, carbon, nitrogen and phosphorus in different organs of two conifer species on the Loess Plateau[J]. J Earth Environ, 2018, 9(1): 54-63. DOI: 10.7515/JEE182004.
[8]
杨婷, 钟全林, 李宝银, 等. 3种功能型林木幼苗叶片与细根碳氮磷化学计量特征及其异速关系[J]. 应用生态学报, 2020, 31(12): 4051-4057.
YANG T, ZHONG Q L, LI B Y, et al. Stoichiometry of carbon, nitrogen and phosphorus and their allometric relationship between leaves and fine roots of three functional tree seedlings[J]. Chin J Appl Ecol, 2020, 31(12): 4051-4057. DOI: 10.13287/j.1001-9332.202012.004.
[9]
张耀艺, 倪祥银, 杨静, 等. 中亚热带同质园不同树种氮磷重吸收及化学计量特征[J]. 应用生态学报, 2021, 32(4): 1154-1162.
ZHANG Y Y, NI X Y, YANG J, et al. Nitrogen and phosphorus resorption and stoichiometric characteristics of different tree species in a mid-subtropical common-garden, China[J]. Chin J Appl Ecol, 2021, 32(4): 1154-1162. DOI: 10.13287/j.1001-9332.202104.003.
[10]
赵瑞, 王传宽, 全先奎, 等. 黑龙江省帽儿山温带阔叶树种不同器官的生态化学计量特征[J]. 林业科学, 2021, 57(2): 1-11.
ZHAO R, WANG C K, QUAN X K, et al. Ecological stoichiometric characteristics of different organs of broadleaf tree species in a temperate forest in Maoershan area, Heilongjiang Province[J]. Sci Silvae Sin, 2021, 57(2): 1-11. DOI: 10.11707/j.1001-7488.20210201.
[11]
MINDEN V, KLEYER M. Internal and external regulation of plant organ stoichiometry[J]. Plant Biol (Stuttg), 2014, 16(5): 897-907. DOI:10.1111/plb.12155.
[12]
YANG X, TANG Z Y, JI C J, et al. Scaling of nitrogen and phosphorus across plant organs in shrubland biomes across northern China[J]. Sci Rep, 2014, 4: 5448. DOI: 10.1038/srep05448.
[13]
REICH P B, OLEKSYN J. Global patterns of plant leaf N and P in relation to temperature and latitude[J]. Proc Natl Acad Sci USA, 2004, 101(30): 11001-11006. DOI:10.1073/pnas.0403588101.
[14]
YAN Z B, LI P, CHEN Y H, et al. Nutrient allocation strategies of woody plants: an approach from the scaling of nitrogen and phosphorus between twig stems and leaves[J]. Sci Rep, 2016, 6: 20099. DOI: 10.1038/srep20099.
[15]
沙刚, 黄庆阳, 徐明怡, 等. 五大连池新期火山熔岩台地4种乔木植物化学计量及其内稳性特征[J]. 中南林业科技大学学报, 2022, 42(9): 127-138.
SHA G, HUANG Q Y, XU M Y, et al. Stoichiometry and homeostasis characteristics of four arbor species at the new stage Volcanic Lava Platform of the Wudalianchi area[J]. J Central South Univ For & Technol, 2022, 42(9): 127-138. DOI: 10.14067/j.cnki.1673-923x.2022.09.014.
[16]
王亚东, 魏江生, 周梅, 等. 大兴安岭南段不同生长衰退程度山杨林生态化学计量特征[J]. 土壤通报, 2021, 52(4): 854-864.
WANG Y D, WEI J S, ZHOU M, et al. Ecological of stoichiometric characteristics of Populus davidiana forests with different growth and decline degrees in southern Daxing’anling[J]. Chin J Soil Sci, 2021, 52(4): 854-864. DOI: 10.19336/j.cnki.trtb.2020052701.
[17]
郝玉琢, 周磊, 吴慧, 等. 4种类型水曲柳人工林叶片-凋落物-土壤生态化学计量特征比较[J]. 南京林业大学学报(自然科学版), 2019, 43(4): 101-108.
HAO Y Z, ZHOU L, WU H, et al. Comparison of ecological stoichiometric characteristics of leaf-litter-soil in four types of Fraxinus mandshurica plantations[J]. J Nanjing For Univ (Nat Sci Ed), 2019, 43(4): 101-108. DOI: 10.3969/j.issn.1000-2006.201806021.
[18]
罗芊芊, 周志春, 邓宗付, 等. 南方红豆杉天然居群叶片的表型性状和氮磷化学计量特征的变异规律[J]. 植物资源与环境学报, 2021, 30(1): 27-35.
LUO Q Q, ZHOU Z C, DENG Z F, et al. Variation law of phenotypic traits and nitrogen and phosphorus stoichiometric characteristics of leaf of natural populations of Taxus wallichiana var. mairei[J]. J Plant Resour Environ, 2021, 30(1): 27-35. DOI: 10.3969/j.issn.1674-7895.2021.01.04.
[19]
张志录, 刘中华, 陈明辉. 伏牛山区红豆杉不同叶龄叶片性状对海拔梯度的响应[J]. 福州大学学报(自然科学版), 2019, 47(2): 265-271, 278.
ZHANG Z L, LIU Z H, CHEN M H. Effects of altitude gradient on the leaf traits at different leaf age of Taxus chinensis in Funiu area[J]. J Fuzhou Univ (Nat Sci Ed), 2019, 47(2): 265-271, 278. DOI: 10.7631/issn.1000-2243.18234.
[20]
陈黎, 刘成功, 钱莹莹, 等. 南方红豆杉人工林针叶C、N、P化学计量特征[J]. 南京林业大学学报(自然科学版), 2021, 45(5): 53-61.
CHEN L, LIU C G, QIAN Y Y, et al. Stoichiometric characteristics of C, N, P of Taxus chinensis var. mairei plantation needles[J]. J Nanjing For Univ (Nat Sci Ed), 2021, 45(5): 53-61. DOI: 10.12302/j.issn.1000-2006.202103051.
[21]
杨克彤, 陈国鹏. 红豆杉幼树异龄叶的功能性状[J]. 应用生态学报, 2022, 33(2): 329-336.
YANG K T, CHEN G P. Functional traits of leaves with different ages of Taxus wallichiana var. chinensis saplings[J]. Chin J Appl Ecol, 2022, 33(2): 329-336. DOI: 10.13287/j.1001-9332.202202.003.
[22]
AUGUSTO L, DE SCHRIJVER A, VESTERDAL L, et al. Influences of evergreen gymnosperm and deciduous angiosperm tree species on the functioning of temperate and boreal forests[J]. Biol Rev, 2015, 90(2): 444-466. DOI: 10.1111/brv.12119.
[23]
温璐宁. 东北地区21种乔木根系形态及组织化学特征[D]. 哈尔滨: 东北林业大学, 2019.
WEN L N. Root morphology and histochemical characteristics of 21 tree species in northeast China[D]. Harbin: Northeast Forestry University, 2019.
[24]
师伟, 王政权, 刘金梁, 等. 帽儿山天然次生林20个阔叶树种细根形态[J]. 植物生态学报, 2008, 32(6): 1217-1226.
SHI W, WANG Z Q, LIU J L, et al. Fine root morphology of twenty hardwood species in Maoershan natural secondary forest in northeastern China[J]. Chinese Journal of Plant Ecology, 2008, 32(6): 1217-1226. DOI: 10.3773/j.issn.1005-264x.2008.06.002.
[25]
张林, 罗天祥. 植物叶寿命及其相关叶性状的生态学研究进展[J]. 植物生态学报, 2004, 28(6): 844-852.
ZHANG L, LUO T X. Advances in ecological studies on leaf lifespan and associated leaf traits[J]. Chinese Journal of Plant Ecology, 2004, 28(6): 844-852. DOI: 10.17521/cjpe.2004.0110.
[26]
HENRY H A L, AARSSEN L W. On the relationship between shade tolerance and shade avoidance strategies in woodland plants[J]. Oikos, 1997, 80(3): 575-582. DOI:10.2307/3546632.
[27]
KOERSELMAN W, MEULEMAN A F M. The vegetation N:P ratio: a new tool to detect the nature of nutrient limitation[J]. J Appl Ecol, 1996, 33(6): 1441-1450. DOI:10.2307/2404783.
[28]
GÜSEWELL S. N:P ratios in terrestrial plants: variation and functional significance[J]. New Phytol, 2004, 164(2): 243-266. DOI: 10.1111/j.1469-8137.2004.01192.x.
[29]
YAN Z B, TIAN D, HAN W X, et al. An assessment on the uncertainty of the nitrogen to phosphorus ratio as a threshold for nutrient limitation in plants[J]. Ann Bot, 2017, 120(6): 937-942. DOI:10.1093/aob/mcx106.
[30]
WU T G, YU M K, WANG G G, et al. Leaf nitrogen and phosphorus stoichiometry across forty-two woody species in southeast China[J]. Biochem Syst Ecol, 2012, 44: 255-263. DOI: 10.1016/j.bse.2012.06.002.
[31]
ELSER J J, BRACKEN M E S, CLELAND E E, et al. Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems[J]. Ecol Lett, 2007, 10(12): 1135-1142. DOI: 10.1111/j.1461-0248.2007.01113.x.
[32]
MARTIN J G, KLOEPPEL B D, SCHAEFER T L, et al. Aboveground biomass and nitrogen allocation of ten deciduous southern Appalachian tree species[J]. Can J For Res, 1998, 28(11): 1648-1659. DOI:10.1139/x98-146.
[33]
EISSENSTAT D M, WELLS C E, YANAI R D, et al. Building roots in a changing environment: implications for root longevity[J]. New Phytol, 2000, 147(1): 33-42. DOI:10.1046/j.1469-8137.2000.00686.x.
[34]
ELSER J J, FAGAN W F, KERKHOFF A J, et al. Biological stoichiometry of plant production: metabolism, scaling and ecological response to global change[J]. New Phytol, 2010, 186(3): 593-608. DOI: 10.1111/j.1469-8137.2010.03214.x.
[35]
ZHANG J H, HE N P, LIU C C, et al. Variation and evolution of C:N ratio among different organs enable plants to adapt to N-limited environments[J]. Glob Chang Biol, 2020, 26(4): 2534-2543. DOI: 10.1111/gcb.14973.
[36]
MARSCHNERT H, KIRKBY E A, ENGELS C. Importance of cycling and recycling of mineral nutrients within plants for growth and development[J]. Bot Acta, 1997, 110(4): 265-273. DOI: 10.1111/j.1438-8677.1997.tb00639.x.
[37]
成俊卿. 中国木材志[M]. 北京: 中国林业出版社, 1992.
CHENG J Q. Wood records of China[M]. Beijing: China Forestry Publishing House, 1992.
[38]
ÅGREN G I. Stoichiometry and nutrition of plant growth in natural communities[J]. Annu Rev Ecol Evol Syst, 2008, 39(1): 153-170. DOI: 10.1146/annurev.ecolsys.39.110707.173515.

黑龙江帽儿山森林生态系统国家野外科学观测研究站对本研究提供支持和帮助。

PDF(1727 KB)

Accesses

Citation

Detail

Sections
Recommended
The full text is translated into English by AI, aiming to facilitate reading and comprehension. The core content is subject to the explanation in Chinese.

/