JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2023, Vol. 47 ›› Issue (5): 28-38.doi: 10.12302/j.issn.1000-2006.202210012
Special Issue: 林草计算机应用研究专题
Previous Articles Next Articles
LI Shuangxian1(), LU Xin1, Duojie Cairen2, ZHANG Huaiqing3, XUE Lianfeng1, YUN Ting1,2,*(
)
Received:
2022-10-10
Revised:
2023-01-02
Online:
2023-09-30
Published:
2023-10-10
CLC Number:
LI Shuangxian, LU Xin, Duojie Cairen, ZHANG Huaiqing, XUE Lianfeng, YUN Ting. A novel approach for leaf area retrieval from terrestrial laser scanned points[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2023, 47(5): 28-38.
Table 1
Details of the four experimental trees"
树种 species | 树高/m tree height | 冠幅(南北× 东西)/m×m crown width (north-south× east-west) | 枝下高/m clear bole height | 单叶长/ cm leaf length | 单叶宽/ cm leaf width |
---|---|---|---|---|---|
紫薇 Lagerstroemia indica | 2.50 | 2.04×2.24 | 0.67 | 5.29±1.02 | 3.46±0.52 |
樱花 Cerasus spp. | 3.50 | 2.95×2.54 | 1.29 | 11.51±2.35 | 5.91±2.02 |
银杏 Ginkgo biloba | 10.35 | 4.96×4.26 | 1.75 | 4.78±0.96 | 7.33±1.47 |
香樟 Cinnamomum camphora | 16.31 | 7.16×6.06 | 3.67 | 7.05±1.87 | 4.40±0.72 |
Table 2
Result analysis of our approach for experimental trees"
树种 species | 分割叶片 点云数量 leaf point clouds | 分割枝干点云数量 branch point clouds | 枝叶分离 总体精度/% total accuracy of branch and leaf separation | 分割单叶数量 number of single leaves divided | 平均叶 面积/cm2 mean leaf area | 树冠总叶面积/m2 total crown leaf area | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
计算机 network | 人工 manual | 计算机 network | 人工 manua | 算法[37] algorithm[37] | 计算机 network | 人工 manua | 算法[37] algorithm[37] | |||||||||
紫薇 Lagerstroemia indica | 15 480 | 16 080 | 4 644 | 4 824 | 94.81 | 387 | 402 | 351 | 12.21±1.83 | 0.47 | 0.42 | 0.49 | ||||
樱花 Cerasus spp. | 35 814 | 37 768 | 9 244 | 9 531 | 92.36 | 485 | 497 | 468 | 45.35±8.07 | 2.15 | 2.11 | 2.19 | ||||
银杏 Ginkgo biloba | 424 983 | 426 153 | 84 996 | 85 230 | 91.56 | 10 132 | 10 927 | 9 542 | 23.36±4.67 | 23.46 | 22.03 | 25.53 | ||||
香樟 Cinnamomum camphora | 397 350 | 402 630 | 119 205 | 120 789 | 92.18 | 12 197 | 13 421 | 11 586 | 20.68±4.76 | 25.39 | 24.12 | 27.75 |
[1] | 何友铸, 张振乾, 官春云. 高光谱遥感技术在精细农业监测上的应用及展望[J]. 作物研究, 2015, 29(1):96-100. |
HE Y Z, ZHANG Z Q, GUAN C Y. Application and prospect of hyperspectral remote sensing technology in precision agriculture monitoring[J]. Crop Res, 2015, 29(1):96-100..DOI: 10.3969/j.issn.1001-5280.2015.01.23. | |
[2] | GOWER S T, KUCHARIK C J, NORMAN J M. Direct and indirect estimation of leaf area index,fAPAR,and net primary production of terrestrial ecosystems[J]. Remote Sens Environ, 1999, 70(1):29-51.DOI: 10.1016/S0034-4257(99)00056-5. |
[3] | BRÉDA N J J. Ground-based measurements of leaf area index:a review of methods,instruments and current controversies[J]. J Exp Bot, 2003, 54(392):2403-2417.DOI: 10.1093/jxb/erg263. |
[4] | MAJASALMI T, RAUTIAINEN M, STENBERG P, et al. An assessment of ground reference methods for estimating LAI of boreal forests[J]. For Ecol Manag, 2013, 292:10-18.DOI: 10.1016/j.foreco.2012.12.017. |
[5] | MONTEITH J L, ROSS J. The radiation regime and architecture of plant stands[J]. J Ecol, 1983, 71(1):344.DOI: 10.2307/2259995. |
[6] | MACFARLANE C, RYU Y, OGDEN G N, et al. Digital canopy photography:exposed and in the raw[J]. Agric For Meteorol, 2014, 197:244-253.DOI: 10.1016/j.agrformet.2014.05.014. |
[7] |
RYU Y, SONNENTAG O, NILSON T, et al. How to quantify tree leaf area index in an open savanna ecosystem: a multi-instrument and multi-model approach[J]. Agricultural and Forest Meteorology. 2010; 150(1):63-76.
doi: 10.1016/j.agrformet.2009.08.007 |
[8] | 吴彤, 倪绍祥, 李云梅, 等. 由冠层孔隙度反演植被叶面积指数的算法比较[J]. 南京师大学报(自然科学版), 2006, 29(1):111-115. |
WU T, NI S X, LI Y M, et al. A comparison on the algorithms for retrieval of LAI based on gap frictions of vegetation canopy[J]. J Nanjing Norm Univ (Nat Sci), 2006, 29(1):111-115.DOI: 10.3969/j.issn.1001-4616.2006.01.026. | |
[9] | FRANCONE C, PAGANI V, FOI M, et al. Comparison of leaf area index estimates by ceptometer and PocketLAI smart app in canopies with different structures[J]. Field Crops Res, 2014, 155:38-41.DOI: 10.1016/j.fcr.2013.09.024. |
[10] | CHEN J M, CIHLAR J. Quantifying the effect of canopy architecture on optical measurements of leaf area index using two gap size analysis methods[J]. IEEE Trans Geosci Remote Sens, 1995, 33(3):777-787.DOI: 10.1109/36.387593. |
[11] | DANSON F M, GAULTON R, ARMITAGE R P, et al. Developing a dual-wavelength full-waveform terrestrial laser scanner to characterize forest canopy structure[J]. Agric For Meteorol, 2014, 198/199:7-14.DOI: 10.1016/j.agrformet.2014.07.007. |
[12] | LOVELL J L, JUPP D L B, NEWNHAM G J, et al. Measuring tree stem diameters using intensity profiles from ground-based scanning lidar from a fixed viewpoint[J]. ISPRS J Photogramm Remote Sens, 2011, 66(1):46-55.DOI: 10.1016/j.isprsjprs.2010.08.006. |
[13] | SRINIVASAN S, POPESCU S, ERIKSSON M, et al. Terrestrial laser scanning as an effective tool to retrieve tree level height,crown width,and stem diameter[J]. Remote Sens, 2015, 7(2):1877-1896.DOI: 10.3390/rs70201877. |
[14] | JUPP D L B, CULVENOR D S, LOVELL J L, et al. Estimating forest LAI profiles and structural parameters using a ground-based laser called ‘Echidna’[J]. Tree Physiol, 2009, 29(2):171-181.DOI: 10.1093/treephys/tpn022. |
[15] | HOPKINSON C, CHASMER L, YOUNG-POW C, et al. Assessing forest metrics with a ground-based scanning lidar[J]. Can J For Res, 2004, 34(3):573-583.DOI: 10.1139/x03-225. |
[16] | CALDERS K, ADAMS J, ARMSTON J, et al. Terrestrial laser scanning in forest ecology:expanding the horizon[J]. Remote Sens Environ, 2020, 251:112102.DOI: 10.1016/j.rse.2020.112102. |
[17] | DETTO M, ASNER G P, MULLER-LANDAU H C, et al. Spatial variability in tropical forest leaf area density from multireturn lidar and modeling[J]. J Geophys Res Biogeosci, 2015, 120(2):294-309.DOI: 10.1002/2014jg002774. |
[18] | OSHIO H, ASAWA T, HOYANO A, et al. Estimation of the leaf area density distribution of individual trees using high-resolution and multi-return airborne LiDAR data[J]. Remote Sens Environ, 2015, 166:116-125.DOI: 10.1016/j.rse.2015.05.001. |
[19] | HOSOI F, OMASA K. Voxel-based 3-D modeling of individual trees for estimating leaf area density using high-resolution portable scanning lidar[J]. IEEE Trans Geosci Remote Sensing, 2006, 44(12):3610-3618.DOI: 10.1109/tgrs.2006.881743. |
[20] | GRAU E, DURRIEU S, FOURNIER R, et al. Estimation of 3D vegetation density with Terrestrial Laser Scanning data using voxels: a sensitivity analysis of influencing parameters[J]. Remote Sens Environ, 2017, 191:373-388.DOI: 10.1016/j.rse.2017.01.032. |
[21] |
BÉLAND M, WIDLOWSKI J L, FOURNIER R A. A model for deriving voxel-level tree leaf area density estimates from ground-based LiDAR[J]. Environ Model Softw, 2014, 51:184-189.
doi: 10.1016/j.envsoft.2013.09.034 |
[22] | 谷趁趁, 翟长远, 陈立平, 等. 基于激光雷达的树形靶标冠层叶面积探测模型研究[J]. 农业机械学报, 2021, 52(11)278-286. |
GU C C, ZHAI C Y, CHEN L P, et al. Detection model of tree canopy leaf area based on LiDAR technology[J]. Trans Chin Soc Agric Mach, 2021, 52(11)278-286.DOI: 10.6041/j.issn.1000-1298.2021.11.030. | |
[23] | 张美娜, 吕晓兰, 邱威, 等. 基于三维激光点云的靶标叶面积密度计算方法[J]. 农业机械学报, 2017, 48(11)172-178 |
ZHANG M N, LYU X L, QIU W, et al. Calculation method of leaf area density based on three-dimensional laser point cloud[J]. Trans Chin Soc Agric Mach, 2017, 48(11)172-178.DOI: 10.6041/j.issn.1000-1298.2017.11.021. | |
[24] | 周梦维, 柳钦火, 刘强, 等. 机载激光雷达的作物叶面积指数定量反演[J]. 农业工程学报, 2011, 27(4):207-213. |
ZHOU M W, LIU Q H, LIU Q, et al. Inversion of leaf area index based on small-footprint waveform airborne LIDAR[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2011, 27(4): 207-213. | |
[25] | 巴比尔江·迪力夏提, 玉米提·哈力克, 艾萨迪拉·玉苏甫, 等. 应用地基激光雷达数据估算塔里木河下游胡杨叶面积指数[J]. 东北林业大学学报, 2020, 48(11):46-50.DOI:10.13759/j.cnki.dlxb.2020.11.008. |
Babierjiang Dilixiati, Umut Halike, AIisadila Yusupu, et al. Estimation of leaf area index of Populus euphratica in the lower reaches of Tarim River with terrestrial laser scanning[J]. Journal of Northeast Forestry University, 2020 (11):46-50.DOI:10.13759/j.cnki.dlxb.2020.11.008. | |
[26] | HU R H, BOURNEZ E, CHENG S Y, et al. Estimating the leaf area of an individual tree in urban areas using terrestrial laser scanner and path length distribution model[J]. ISPRS J Photogramm Remote Sens, 2018, 144:357-368.DOI: 10.1016/j.isprsjprs.2018.07.015. |
[27] | ANGULO V, RODRIGUEZ J, GAONA E, et al. A super voxel-based approach for leaves segmentation of potato plants from point clouds[C]// IGARSS 2020 - 2020 IEEE International Geoscience and Remote Sensing Symposium.September 26-October 2,2020.Waikoloa,HI,USA:IEEE, 2020.DOI: 10.1109/igarss39084.2020.9324365. |
[28] | ITAKURA K, HOSOI F. Automatic leaf segmentation for estimating leaf area and leaf inclination angle in 3D plant images[J]. Sensors (Basel), 2018, 18(10):3576.DOI: 10.3390/s18103576. |
[29] | LI D W, CAO Y, SHI G L, et al. An overlapping-free leaf segmentation method for plant point clouds[J]. IEEE Access, 2019, 7:129054-129070.DOI: 10.1109/access.2019.2940385. |
[30] | BEARDSLEY P, CHAURASIA G. Editable parametric dense foliage from 3D capture[C]// 2017 IEEE International Conference on Computer Vision (ICCV).October 22-29,2017. Venice: IEEE, 2017:5315-24.DOI: 10.1109/iccv.2017.567. |
[31] | SHI W N, VAN DE ZEDDE R, JIANG H Y, et al. Plant-part segmentation using deep learning and multi-view vision[J]. Biosyst Eng, 2019, 187:81-95.DOI: 10.1016/j.biosystemseng.2019.08.014. |
[32] | HAN B B, LI Y Q, BIE Z L, et al. MIX-NET:Deep learning-based point cloud processing method for segmentation and occlusion leaf restoration of seedlings[J]. Plants, 2022, 11(23):3342.DOI: 10.3390/plants11233342. |
[33] | WANG L, ZHENG L, WANG M. 3D Point cloud instance segmentation of lettuce based on PartNet[R]. 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)2022. |
[34] | LI D W, SHI G L, LI J S, et al. PlantNet:a dual-function point cloud segmentation network for multiple plant species[J]. ISPRS J Photogramm Remote Sens, 2022, 184:243-263.DOI: 10.1016/j.isprsjprs.2022.01.007 |
[35] | YUN T, AN F, LI W Z, et al. A novel approach for retrieving tree leaf area from ground-based LiDAR[J]. Remote Sens, 2016, 8(11):942.DOI: 10.3390/rs8110942. |
[36] | BAILEY B N, MAHAFFEE W F. Rapid measurement of the three-dimensional distribution of leaf orientation and the leaf angle probability density function using terrestrial LiDAR scanning[J]. Remote Sens Environ, 2017, 194:63-76.DOI: 10.1016/j.rse.2017.03.011. |
[37] | XU Q F, CAO L, XUE L F, et al. Extraction of leaf biophysical attributes based on a computer graphic-based algorithm using terrestrial laser scanning data[J]. Remote Sens, 2018, 11(1):15.DOI: 10.3390/rs11010015. |
[1] | YAN Yu, LI Qiujie, LI Weizheng. A single tree segmentation method for street trees facing side-looking MLS point clouds [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2024, 48(6): 166-174. |
[2] | WANG Yue, MIAO Zheng, HAO Yuanshuo, LIU Xin, DONG Lihu. A single tree leaf area prediction model in the Larix olgensis and Fraxinus mandshurica mixed forest [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2024, 48(5): 235-245. |
[3] | YI Jing, MA Kaisen, XIANG Jianping, TANG Jie, JIANG Fugen, CHEN Song, SUN Hua. Research on TLS single tree detection method based on point cloud slicing combined with clustering algorithm [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2024, 48(4): 113-122. |
[4] | PAN Zhengshang, MA Kaisen, LONG Yi, LAI Zhengui, SUN Hua. An improved CART model for leaf and wood classification from LiDAR point clouds of Quercus glauca individual trees [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2024, 48(4): 123-131. |
[5] | YAN Yu, LI Qiujie. Online segmentation method of target point cloud in roadside tree [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2024, 48(4): 141-149. |
[6] | ZHAO Yugang, LIU Wenping, ZHOU Yan, CHEN Riqiang, ZONG Shixiang, LUO Youqing. UAV forestry land-cover image segmentation method based on attention mechanism and improved DeepLabV3+ [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2024, 48(4): 93-103. |
[7] | NIU Hongjian, LIU Wenping, CHEN Riqiang, ZONG Shixiang, LUO Youqing. Dehaze algorithm for woodland UAV images based on Resnet [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2024, 48(2): 175-181. |
[8] | GAO Xieyu, DONG Lihu, HAO Yuanshuo. Effects of thinning on Larix olgensis plantation stem form based on TLS [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2023, 47(6): 85-94. |
[9] | ZHANG Huacong, TAN Xinjian, YU Longhua, LI Yueqiao, CHEN Yongfu, LIU Ren, ZHANG Huaiqing. Crown segmentation of CHM based on the enhanced frost local filtering and distance map reconstruction [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2023, 47(5): 9-18. |
[10] | SUN Yu, LI Fengri, XIE Longfei, DONG Lihu. Construction of the stand-level biomass model of Larix olgensis plantations based on stand and topographic factors [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2023, 47(3): 129-136. |
[11] | TANG Yiren, JIA Weiwei, WANG Fan, SUN Yuman, ZHANG Ying. Constructing a biomass model of Larix olgensis primary branches based on TLS [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2023, 47(2): 130-140. |
[12] | OU Jiande. Effects of forking on the crown morphology, growth and form quality of Taxus chinensis var. mairei [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2023, 47(2): 87-94. |
[13] | WANG Fan, JIA Weiwei, TANG Yiren, LI Dandan. Extraction of crown radius and development of crown profile model of Pinus koraiensis based on TLS [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2023, 47(1): 13-22. |
[14] | CHENG Xiaofei, WU Gang. Locating individual tree from high resolution satellite images based on CV model [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2022, 46(5): 143-151. |
[15] | NIE Luyi, DONG Lihu, LI Fengri, MIAO Zheng, XIE Longfei. Construction of taper equation for Larix olgensis based on two-level nonlinear mixed effects model [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2022, 46(3): 194-202. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||