Soil quality assessment for Carya illinoensis-Paeonia ostii under various patterns

CHEN Hui, WANG Gaiping, PENG Fangren, ZHU Yunfen, ZHANG Yu, WANG Han

JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2024, Vol. 48 ›› Issue (4) : 177-183.

PDF(1822 KB)
PDF(1822 KB)
JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2024, Vol. 48 ›› Issue (4) : 177-183. DOI: 10.12302/j.issn.1000-2006.202210021

Soil quality assessment for Carya illinoensis-Paeonia ostii under various patterns

Author information +
History +

Abstract

【Objective】The aim of the present study was to investigate the soil physical properties, chemical properties, and enzyme activities under different Carya illinoensis ‘Pawnee’ and Paeonia ostii ‘Feng Dan’ planting modes, as well as analyze the effects of different modes and seasons on soil characteristics.【Method】The treatments included single cultivation of C. illinoensis (mode Ⅰ), compound cultivation of C. illinoensis ‘Pawnee’-P. ostii ‘Feng Dan’ (mode Ⅱ), and single cultivation of P. ostii (mode Ⅲ). Seasonal variation of soil physical properties, chemical properties, and enzyme activities were measured under different modes, and the minimum date set method and soil integrated fertility index (IFI) were utilized to evaluate the changes of soil fertility.【Result】The nutrient and enzyme activity in the surface soil were higher than those in the deep soil. The soil moisture content and bulk density gradually varied with the seasons of spring, summer and autumn. There was no significant difference on soil pH between the spring and summer seasons, and the lowest soil pH was observed in autumn. The soil catalase activity in summer was higher than that in spring and autumn. The soil organic matter content, total nitrogen content, available potassium content, sucrase activity, and urease activity increased during the seasonal variation of spring, summer, and autumn. In mode Ⅲ, the soil available phosphorus content in autumn was higher than that in spring and summer. The seasonal variation of the soil IFI was the lowest in summer and highest in mode Ⅱ.【Conclusion】There is a correlation among soil physical properties, chemical properties and enzyme activities. The soil fertility of the compound cultivation of C. illinoensis ‘Pawnee’-P. ostii ‘Feng Dan’ (mode Ⅱ) is significantly higher than single cultivation of either species, and the soil fertility quality is lower in summer than in spring and autumn. The soil fertility quality is directly affected by bulk density, total nitrogen content, available potassium content, available phosphorus content, sucrase activity, and urease activity. Further, sucrase activity is more sensitive in evaluating the soil IFI in all seasons.

Key words

Carya illinoensis / Paeonia ostii ‘Feng Dan’ / compound management / soil physical and chemical property / soil enzyme activity

Cite this article

Download Citations
CHEN Hui , WANG Gaiping , PENG Fangren , et al . Soil quality assessment for Carya illinoensis-Paeonia ostii under various patterns[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2024, 48(4): 177-183 https://doi.org/10.12302/j.issn.1000-2006.202210021

References

[1]
张日清, 吕芳德. 优良经济树种:美国山核桃[J]. 广西林业科学, 1998, 27(4):202-206.
ZHANG R Q, LYU F D. Good economic tree species—Carya Americana[J]. Guangxi For Sci, 1998, 27(4):202-206.DOI: 10.19692/j.cnki.gfs.1998.04.009.
[2]
陈文霞, 吴文浩, 彭方仁. 江苏丘陵地区薄壳山核桃适宜栽培模式及其产业发展对策[J]. 江苏林业科技, 2016, 43(3):53-57.
CHEN W X, WU W H, PENG F R. Suitable cultivation mode and industrial development countermeasures of Carya illinoensis in hilly areas of Jiangsu Province[J]. J Jiangsu For Sci & Technol, 2016, 43(3):53-57.DOI: 10.3969/j.issn.1001-7380.2016.03.014.
[3]
JIN J, WANG L, MÜLLER K, et al. A 10-year monitoring of soil properties dynamics and soil fertility evaluation in Chinese hickory plantation regions of southeastern China[J]. Sci Rep, 2021, 11(1):23531. DOI: 10.1038/s41598-021-02947-z.
[4]
彭方仁, 李永荣, 郝明灼, 等. 我国薄壳山核桃生产现状与产业化发展策略[J]. 林业科技开发, 2012, 26(4):1-4.
PENG F R, LI Y R, HAO M Z, et al. Production status and industrialization development strategy of Carya illinoensis in China[J]. Journal of Forestry Engineering, 2012, 26(4):1-4.DOI: 10.3969/j.issn1000-8101.201402001.
[5]
陈幸良. 林下经济学的缘起、发展与展望[J]. 南京林业大学学报(自然科学版), 2022, 46(6):105-114.
CHEN X L. The origin,development and propspect of non-timber forest-based economics[J]. J Nanjing For Univ (Nat Sci Ed), 2022, 46(6):105-114.DOI: 10.12302/j.issn.1000-2006.202210024.
[6]
HONG Y, HEERINK N, JIN S Q, et al. Intercropping and agroforestry in China-current state and trends[J]. Agric Ecosyst Environ, 2017, 244:52-61.DOI: 10.1016/j.agee.2017.04.019.
[7]
王怡晨, 孙海燕, 李永荣, 等. 油用牡丹‘凤丹’单株结实量及产油品质分析[J]. 南京林业大学学报(自然科学版), 2019, 43(4):155-160.
WANG Y C, SUN H Y, LI Y R, et al. Analysis of the variation in yield and oil quality traits of selected Paeonia ostii ‘Feng Dan’ individuals[J]. J Nanjing For Univ (Nat Sci Ed), 2019, 43(4):155-160.DOI: 10.3969/j.issn.1000-2006.201812031.
[8]
邓瑞雪, 刘振, 秦琳琳, 等. 超临界CO2流体提取洛阳牡丹籽油工艺研究[J]. 食品科学, 2010, 31(10):142-145.
DENG R X, LIU Z, QIN L L, et al. Optimization of supercritical CO2 extraction and analysis of chemical composition of peony seed oil[J]. Food Sci, 2010, 31(10):142-145.DOI: 10.7506/spkx1002-6630-201010028.
[9]
韩继刚, 李晓青, 刘炤, 等. 牡丹油用价值及其应用前景[J]. 粮食与油脂, 2014, 27(5):21-25.
HAN J G, LI X Q, LIU Z, et al. Potential applications of tree peony as an oil plant[J]. Cereals Oils, 2014, 27(5):21-25.DOI: 10.3969/j.issn.1008-9578.2014.05.006.
[10]
沈永涛, 张胜昔, 岳长江, 等. 核桃—小麦间作土壤养分与酶活性的变化[J]. 甘肃林业科技, 2021, 46(2):40-42,50.
SHEN Y T, ZHANG S X, YUE C J, et al. Changes of soil nutrients and enzyme activities in Juglans regia & Triticum aestivu intercropping[J]. J Gansu For Sci Technol, 2021, 46(2):40-42,50.DOI: 10.3969/j.issn.1006-0960.2021.02.011.
[11]
李孟, 刘琅, 刀梅, 等. 栗-茶间作茶园土壤化学性质和细菌丰富度分析[J]. 经济林研究, 2022, 40(1):58-65,81.
LI M, LIU L, DAO M, et al. Analysis of soil chemical properties and bacterial richness in chestnut-tea intercropping tea orchard[J]. Non Wood For Res, 2022, 40(1):58-65,81.DOI: 10.14067/j.cnki.1003-8981.2022.01.007.
[12]
孟凡旭, 王树森, 秦富仓, 等. 残塬沟壑区不同果农复合模式对土壤理化性质及水源涵养功能的影响[J]. 水土保持学报, 2020, 34(5):192-199.
MENG F X, WANG S S, QIN F C, et al. Effect of different fruit-crop compounds on soil physiochemical properties and soil-water conservation in gully region of plateau[J]. J Soil Water Conserv, 2020, 34(5):192-199.DOI: 10.13870/j.cnki.stbcxb.2020.05.027.
[13]
唐瑾暄, 秦晓威, 鱼欢, 等. 槟榔间作香露兜对土壤养分和养分吸收的影响[J]. 热带作物学报, 2021, 42(9):2571-2578.
TANG J X, QIN X W, YU H, et al. Effect of arecanut and pandan intercropping on soil nutrient and nutrient absorption[J]. Chin J Trop Crops, 2021, 42(9):2571-2578.DOI: 10.3969/j.issn.1000-2561.2021.09.018.
[14]
赵春建, 李玉正, 关佳晶, 等. 东北红豆杉-无花果复合种植对两种植物生长和土壤酶活性影响[J]. 植物研究, 2020, 40(5):679-685.
ZHAO C J, LI Y Z, GUAN J J, et al. Effect of interplanting Taxus cuspidata with Ficus carica on growth of two plants and activities of soil enzymes[J]. Bull Bot Res, 2020, 40(5):679-685.DOI: 10.7525/j.issn.1673-5102.2020.05.006.
[15]
马占霞, 孙武, 李鑫鑫, 等. 不同间作模式茶园对土壤理化性质和茶叶化学成分的影响[J]. 热带农业科学, 2022, 42(5):1-8.
MA Z X, SUN W, LI X X, et al. The effects of different intercropping tea plantations on tea chemical components,soil physical and chemical properties[J]. Chin J Trop Agric, 2022, 42(5):1-8.DOI: 10.12008/j.issn.1009-2196.2022.05.001.
[16]
田洪敏, 罗美玲, 杨雪梅, 等. 茶树-核桃树间作模式对茶园土壤养分的影响[J]. 热带作物学报, 2019, 40(4):657-663.
TIAN H M, LUO M L, YANG X M, et al. The impact on soil nutrient of the tea-walnut intercropping[J]. Chin J Trop Crops, 2019, 40(4):657-663.DOI: 10.3969/j.issn.1000-2561.2019.04.005.
[17]
鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000:1-19,146-195.
LU R K. Methods for agricultural chemical analysis of soil[M]. Beijing: China Agricultural Science and Technology Press, 2000:1-19,146-195.
[18]
关松荫. 土壤酶及其研究法[M]. 北京: 中国农业出版社, 1986:260-339.
GUAN S Y. Soil enzyme and its research method[M]. Beijing: China Agriculture Press, 1986:260-339.
[19]
徐建明, 张甘霖, 谢正苗. 土壤质量指标与评价[M]. 北京: 科学出版社, 2010:40-119.
XU J M, ZHANG G L, XIE Z M. Indices and assessment of soil quality[M]. Beijing: Science Press, 2010:40-119.
[20]
张文学, 王少先, 刘增兵, 等. 基于土壤肥力质量综合指数评价化肥与有机肥配施对红壤稻田肥力的提升作用[J]. 植物营养与肥料学报, 2021, 27(5):777-790.
ZHANG W X, WANG S X, LIU Z B, et al. Evaluating soil fertility improvement effects of chemical fertilizer combined with organic fertilizers in a red paddy soil using the soil fertility index[J]. J Plant Nutr Fertil, 2021, 27(5):777-790.DOI: 10.11674/zwyf.20469.
[21]
邓绍欢, 曾令涛, 关强, 等. 基于最小数据集的南方地区冷浸田土壤质量评价[J]. 土壤学报, 2016, 53(5):1326-1333.
DENG S H, ZENG L T, GUAN Q, et al. Minimum dataset-based soil quality assessment of waterlogged paddy field in South China[J]. Acta Pedol Sin, 2016, 53(5):1326-1333.DOI: 10.11766/trxb201509070316.
[22]
常旭, 邱新彩, 刘欣, 等. 塞罕坝华北落叶松纯林和混交林土壤肥力质量评价[J]. 北京林业大学学报, 2021, 43(8):50-59.
CHANG X, QIU X C, LIU X, et al. Soil fertility quality evaluation of pure and mixed Larix principis-rupprechtii forests in Saihanba,Hebei Province of Northern China[J]. J Beijing For Univ, 2021, 43(8):50-59.DOI: 10.12171/j.1000-1522.20210189.
[23]
周楷玲, 陈绪文, 龚伟, 等. 核桃林下复合种植对土壤培肥效果的影响[J]. 四川农业大学学报, 2019, 37(6):807-813.
ZHOU K L, CHEN X W, GONG W, et al. Effects of compound planting under walnut plantation on soil fertility[J]. J Sichuan Agric Univ, 2019, 37(6):807-813.DOI: 10.16036/j.issn.1000-2650.2019.06.009.
[24]
李晨晨, 周再知, 梁坤南, 等. 南药立体经营模式土壤质量综合评价[J]. 植物研究, 2017, 37(5):778-788.
LI C C, ZHOU Z Z, LIANG K N, et al. Comprehensive evaluation of soil quality on agroforestry stereoscopic management patterns of southern medicine[J]. Bull Bot Res, 2017, 37(5):778-788.DOI: 10.7525/j.issn.1673-5102.2017.05.019.
[25]
郭颖, 聂朝俊, 向仰州, 等. 不同核桃农林复合经营模式对土壤肥力的影响[J]. 土壤通报, 2016, 47(2):391-397.
GUO Y, NIE C J, XIANG Y Z, et al. Effect of different agroforestry patterns on soil fertility in Juglans regia orchards[J]. Chin J Soil Sci, 2016, 47(2):391-397.DOI: 10.19336/j.cnki.trtb.2016.02.21.
[26]
吕丽茹, 扎西尼玛, 陈识澳, 等. 季节性因素对土壤微生物的影响研究进展[J]. 湖北农业科学, 2022, 61(11):62-66,71.
LYU L R, Zhaxinima, CHEN S A, et al. Research progress of seasonal factors on soil microorganism[J]. Hubei Agric Sci, 2022, 61(11):62-66,71. DOI: 10.14088/j.cnki.issn0439-8114.2022.11.011.
[27]
刘建玲, 张凤华. 土壤磷素化学行为及影响因素研究进展[J]. 河北农业大学学报, 2000, 23(3):36-45.
LIU J L, ZHANG F H. The progress of phosphorus transformation in soil and its influencing factors[J]. J Agric Univ Hebei, 2000, 23(3):36-45.DOI: 10.3969/j.issn.1000-1573.2000.03.010.
[28]
任子文, 吴佳美, 石佩佩, 等. 红壤磷素化学行为及影响因素研究进展[J]. 内蒙古林业调查设计, 2017, 40(2):100-104.
REN Z W, WU J M, SHI P P, et al. Research progress on chemical behavior and influencing factors of phosphorus in red soil[J]. Inn Mong For Investig Des, 2017, 40(2):100-104.DOI: 10.13387/j.cnki.nmld.2017.02.041.
[29]
汪贵斌, 曹福亮, 程鹏, 等. 不同银杏复合经营模式土壤酶活性及综合评价[J]. 南京林业大学学报(自然科学版), 2010, 34(4):1-6.
WANG G B, CAO F L, CHENG P, et al. The activities and integrated evaluation of soil enzymes of different agroforestry patterns of Ginkgo biloba L[J]. J Nanjing For Univ (Nat Sci Ed), 2010, 34(4):1-6.DOI: 10.3969/j.issn.1000-2006.2010.04.001.
[30]
WANG Z C, ZHOU M Y, LIU H, et al. Pecan agroforestry systems improve soil quality by stimulating enzyme activity[J]. PeerJ, 2022, 10:e12663.DOI: 10.7717/peerj.12663.
[31]
李林海, 邱莉萍, 梦梦. 黄土高原沟壑区土壤酶活性对植被恢复的响应[J]. 应用生态学报, 2012, 23(12):3355-3360.
LI L H, QIU L P, MENG M. Responses of soil enzyme activities to re-vegetation in gully Loess Plateau of northwest China[J]. Chin J Appl Ecol, 2012, 23(12):3355-3360.DOI: 10.13287/j.1001-9332.2012.0423.
[32]
徐宏强, 汪贵斌, 曹福亮, 等. 生物覆盖对银杏用材林土壤酶活性的影响[J]. 南京林业大学学报(自然科学版), 2015, 39(2):21-26.
XU H Q, WANG G B, CAO F L, et al. Effects of biological mulching on soil enzyme activity of Ginkgo(Ginkgo biloba L.) timber plantation[J]. J Nanjing For Univ (Nat Sci Ed), 2015, 39(2):21-26.DOI: 10.3969/j.issn.1000-2006.2015.02.004.
[33]
汪贵斌, 曹福亮, 程鹏, 等. 不同银杏复合经营模式土壤肥力综合评价[J]. 林业科学, 2010, 46(8):1-7.
WANG G B, CAO F L, CHENG P, et al. Comprehensive evaluation of soil fertility of agroforestry patterns of Ginkgo biloba[J]. Scientia Silvae Sinicae, 2010, 46(8):1-7.DOI: 10.3969/j.issn.1000-2006.2010.04.001.
[34]
ZOU X, ZHU X, ZHU P, et al. Soil quality assessment of different Hevea brasiliensis plantations in tropical China[J]. J Environ Manage, 2021, 285:112-147. DOI: 10.1016/j.jenvman.2021.112147.
PDF(1822 KB)

Accesses

Citation

Detail

Sections
Recommended
The full text is translated into English by AI, aiming to facilitate reading and comprehension. The core content is subject to the explanation in Chinese.

/