Analysis of bacterial community characteristics in the rhizosphere soil of wild tree peony

GUO Lili, ZHANG Chenjie, WANG Fei, SHEN Jiajia, ZHANG Kaiyue, HE Lixia, GUO Qi, HOU Xiaogai

JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2023, Vol. 47 ›› Issue (3) : 45-55.

PDF(4132 KB)
PDF(4132 KB)
JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2023, Vol. 47 ›› Issue (3) : 45-55. DOI: 10.12302/j.issn.1000-2006.202210031

Analysis of bacterial community characteristics in the rhizosphere soil of wild tree peony

Author information +
History +

Abstract

【Objective】 The microbial community in the rhizosphere is produced by the interactions of the soil environment and root metabolic activities, and plays an important role in plant growth and development. Analysis of characteristics of bacterial community in the rhizosphere soil of wild tree peony species possesses important theoretical significance for the effective use of microbial resources to protect wild plant germplasm resources and lays a foundation for improving the soil environment of wild tree peony species and realizing the broad-spectrum planting of high-quality germplasm resources. 【Method】 In the present study, MiSeq high-throughput sequencing technology with 16S rRNA genes was employed to investigate bacterial community characteristics in the rhizosphere soil of nine wild tree peony species (Paeonia ludlowii, P. potaninii, P. delavayi, P. lutea, P. rockii, P. ostii, P. decomposita, P. jishanensis and P. qiui) as well as their relevance with physicochemical properties. 【Result】A total of 606 536 sequences and 99 OTU clusters were obtained by high-throughput sequencing, which belonged to 24 phyla, 84 classes, 154 orders, 280 families and 603 genera. Alpha diversity analysis revealed that the rhizosphere microbial community of P. ostii contained the highest number of species. Beta analysis revealed that the bacterial community structures in the rhizosphere soils of P. decomposita, P. rockii, P. lutea, P. ostii, P. delavayi and P. ludlowii were similar. Analysis of bacterial community compositions showed that the core and dominant bacteria in the rhizosphere soil were Proteobacteria, Acidobacteria, Actinobacteria and Chloroflexi. Significant differences were found in beneficial bacteria among different wild tree species, such as Acidobacteria, Chloroflexi, Nitrospirae, Gemmatimonadetes, Nitrosospira and Pseudomonas. Predicted functions of the rhizosphere bacterial community have mostly focused on metabolism, genetic information processing, and environmental information processing. The bacterial community in the rhizosphere of wild peony trees is significantly affected by soil organic matter and available potassium. 【Conclusion】These results indicated that the bacterial community structure in the rhizosphere soil of different wild tree peony species was different, and the formation of a bacterial community was closely related to the varieties of tree peony. The enrichment in beneficial bacteria (genera) promoted plant growth. In the future, rhizospheric microbial resources could be effectively utilized to improve the soil environment of wild tree peonies, to realize the broad-spectrum planting of high-quality germplasm resources, and to lay the foundation for the protection of wild planting resources.

Key words

Paeonia × suffruticosa / wild tree peony / properties of rhizospheric soil / rhizospheric bacteria / community structure / community composition / correlation analysis

Cite this article

Download Citations
GUO Lili , ZHANG Chenjie , WANG Fei , et al . Analysis of bacterial community characteristics in the rhizosphere soil of wild tree peony[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2023, 47(3): 45-55 https://doi.org/10.12302/j.issn.1000-2006.202210031

References

[1]
李嘉珏, 张西方, 赵孝庆. 中国牡丹[M]. 北京: 中国大百科全书出版社, 2011.
LI J J, ZHANG X F, ZHAO X Q. Tree peony in China[M]. Beijing: Encyclopedia of China Publishing House:2011.
[2]
ZHOU S L, ZOU X H, ZHOU Z Q, et al. Multiple species of wild tree peonies gave rise to the ‘King of flowers’,Paeonia suffruticosa Andrews[J]. Proc R Soc B, 2014, 281(1797):20141687.DOI: 10.1098/rspb.2014.1687.
[3]
孟丽, 郑国生. 部分野生与栽培牡丹种质资源亲缘关系的RAPD研究[J]. 林业科学, 2004, 40(5):110-115.
MENG L, ZHENG G S. Phylogenetic relationship analysis among Chinese wild species and cultivars of Paeonia Sect. Moutan using RAPD markers[J]. Sci Silvae Sin, 2004, 40(5):110-115.DOI: 10.3321/j.issn:1001-7488.2004.05.018.
[4]
YUAN J H, CORNILLE A, GIRAUD T, et al. Independent domestications of cultivated tree peonies from different wild peony species[J]. Mol Ecol, 2014, 23(1):82-95.DOI: 10.1111/mec.12567.
[5]
YANG R X, LIU P, YE W Y. Illumina-based analysis of endophytic bacterial diversity of tree peony (Paeonia Sect. Moutan) roots and leaves[J]. Braz J Microbiol, 2017, 48(4):695-705.DOI: 10.1016/j.bjm.2017.02.009.
[6]
WANG Z Q, ZHU C J, LIU S S, et al. Comprehensive metabolic profile analysis of the root bark of different species of tree peonies (Paeonia Sect.Moutan)[J]. Phytochemistry, 2019, 163:118-125.DOI: 10.1016/j.phytochem.2019.04.005.
[7]
IBARRA J G, COLOMBO R P, GODEAS A M, et al. Analysis of soil bacterial communities associated with genetically modified drought-tolerant corn[J]. Appl Soil Ecol, 2020, 146:103375.DOI: 10.1016/j.apsoil.2019.103375.
[8]
HU D, LI S H, LI Y, et al. Streptomyces sp.strain TOR3209:a rhizosphere bacterium promoting growth of tomato by affecting the rhizosphere microbial community[J]. Sci Rep, 2020, 10(1):20132.DOI: 10.1038/s41598-020-76887-5.
[9]
HANEY C H, SAMUEL B S, BUSH J, et al. Associations with rhizosphere bacteria can confer an adaptive advantage to plants[J]. Nat Plants, 2015, 1(6):15051.DOI: 10.1038/nplants.2015.51.
[10]
赵辉, 王喜英, 徐仕强, 等. 贵州武陵片区不同种植年限设施菜地土壤微生物群落的结构和功能多样性[J]. 河南农业科学, 2021, 50(1):81-91.
ZHAO H, WANG X Y, XU S Q, et al. Soil microbial community structure and functional diversity in vegetable greenhouse for different planting years in Wuling area of Guizhou Province[J]. J Henan Agric Sci, 2021, 50(1):81-91.DOI: 10.15933/j.cnki.1004-3268.2021.01.010.
[11]
CAMENZIND T, HÄTTENSCHWILER S, TRESEDER K K, et al. Nutrient limitation of soil microbial processes in tropical forests[J]. Ecol Monogr, 2018, 88(1):4-21.DOI: 10.1002/ecm.1279.
[12]
林宁, 韦良焕, 蔡吉祥, 等. 叶尔羌河流域荒漠河岸林胡杨根际微生物数量时空变化及其与根际土壤环境因子的关系[J]. 植物资源与环境学报, 2023, 32(2):82-91.
LIN N, WEI L H, CAI J X, et al. Temporal and spatial variation of numbers of rhizosphere microorganisms of Populus euphratica in desert riparian forest of Yarkant River basin and their relationships with rhizosphere soil environmental factors[J]. J Plant Resour Environ, 2023, 32(2):82-91.
[13]
YANG J, KLOEPPER J W, RYU C M. Rhizosphere bacteria help plants tolerate abiotic stress[J]. Trends Plant Sci, 2009, 14(1):1-4.DOI: 10.1016/j.tplants.2008.10.004.
[14]
尹原森, 马国胜, 曹春燕, 等. 不同地区凤丹根际土壤微生物功能多样性分析[J]. 分子植物育种, 2021, 19(20):6918-6926.
YIN Y S, MA G S, CAO C Y, et al. Soil rhizosphere microbial functional diversity analysis of Fengdan(Paeonia ostii) in three different regions[J]. Mol Plant Breed, 2021, 19(20):6918-6926.DOI: 10.13271/j.mpb.019.006918.
[15]
耿晓东, 周英, 汪成忠, 等. 不同种植年限对凤丹牡丹根际真菌群落组成和多样性的影响[J]. 江苏农业科学, 2021, 49(23):145-151.
GENG X D, ZHOU Y, WANG C Z, et al. Impacts of different planting years on composition and diversity of rhizosphere fungal community of Paeonia ostia[J]. Jiangsu Agric Sci, 2021, 49(23):145-151.DOI: 10.15889/j.issn.1002-1302.2021.23.026.
[16]
李昱莹, 刘曙光, 廉小芳, 等. 油用牡丹‘凤丹’不同种植年限根际真菌群落多样性变化研究[J]. 基因组学与应用生物学, 2020, 39(4):1672-1685.
LI Y Y, LIU S G, LIAN X F, et al. Study on the variation of fungal community diversity in the rhizosphere soil of oil tree peony ‘Feng Dan’ in different planting years[J]. Genom Appl Biol, 2020, 39(4):1672-1685.DOI: 10.13417/j.gab.039.001672.
[17]
郭丽丽, 尹伟伦, 郭大龙, 等. 油用凤丹牡丹不同种植时间根际细菌群落多样性变化[J]. 林业科学, 2017, 53(11):131-141.
GUO L L, YIN W L, GUO D L, et al. Variations of bacterial biodiversity in rhizosphere soils of oil tree peony cropping continuously for different years[J]. Sci Silvae Sin, 2017, 53(11):131-141.DOI: 10.11707/j.1001-7488.20171115.
[18]
史冬燕, 王宜磊. 牡丹根际微生物区系及土壤酶活的研究[J]. 黑龙江农业科学, 2013(6):15-17.
SHI D Y, WANG Y L. Study on microflora and enzyme activity in rhizospheric soil of Paeonia suffruticosa[J]. Heilongjiang Agric Sci, 2013(6):15-17.
[19]
XUE D, HUANG X D. Changes in soil microbial community structure with planting years and cultivars of tree peony (Paeonia suffruticosa)[J]. World J Microbiol Biotechnol, 2014, 30(2):389-397.DOI: 10.1007/s11274-013-1457-3.
[20]
冯玮娜, 彭培好. 四川牡丹根际微生物及种子内生菌组成[J]. 东北林业大学学报, 2020, 48(1):88-94.
FENG W N, PENG P H. Microbial composition associated with the rhizosphere and seed endosphere of Paeonia szechuanica[J]. J Northeast For Univ, 2020, 48(1):88-94.DOI: 10.13759/j.cnki.dlxb.2020.01.015.
[21]
王雪山, 杜秉海, 姚良同, 等. 种植年限对牡丹根际土壤微生物群落结构的影响[J]. 山东农业大学学报(自然科学版), 2012, 43(4):508-516.
WANG X S, DU B H, YAO L T, et al. Effects of planting years on microbial communities’ structure in peony rhizosphere soil[J]. J Shandong Agric Univ (Nat Sci), 2012, 43(4):508-516.
[22]
邵秋雨, 董醇波, 韩燕峰, 等. 植物根际微生物组的研究进展[J]. 植物营养与肥料学报, 2021, 27(1):144-152.
SHAO Q Y, DONG C B, HAN Y F, et al. Research progress in the rhizosphere microbiome of plants[J]. J Plant Nutr Fertil, 2021, 27(1):144-152.DOI: 10.11674/zwyf.20203.
[23]
WANG C Q, WANG Y, MA J J, et al. Screening and whole-genome sequencing of two streptomyces species from the rhizosphere soil of peony reveal their characteristics as plant growth-promoting rhizobacteria[J]. Biomed Res Int, 2018, 2018:1-11.DOI: 10.1155/2018/2419686.
[24]
HAN J G, SONG Y, LIU Z G, et al. Culturable bacterial community analysis in the root domains of two varieties of tree peony (Paeonia ostii)[J]. FEMS Microbiol Lett, 2011, 322(1):15-24.DOI: 10.1111/j.1574-6968.2011.02319.x.
[25]
FADROSH D W, MA B, GAJER P, et al. An improved dual-indexing approach for multiplexed 16S rRNA gene sequencing on the Illumina MiSeq platform[J]. Microbiome, 2014, 2(1):1-7.DOI: 10.1186/2049-2618-2-6.
[26]
鲍士旦. 土壤农化分析[M]. 3版. 北京: 中国农业出版社, 2000.
[27]
仇硕, 赵健, 张翠萍, 等. 中国野牡丹科观赏植物种质资源的研究现状与展望[J]. 安徽农业科学, 2008, 36(22):9471-9472,9519.
QIU S, ZHAO J, ZHANG C P, et al. Research status and prospect of Melastomataceae ornamental plants germplasm resources in China[J]. J Anhui Agric Sci, 2008, 36(22):9471-9472,9519.DOI: 10.13989/j.cnki.0517-6611.2008.22.108.
[28]
YU X X, ZHAO J T, LIU X Q, et al. Cadmium pollution impact on the bacterial community structure of arable soil and the isolation of the cadmium resistant bacteria[J]. Front Microbiol, 2021, 12:698834.DOI: 10.3389/fmicb.2021.698834.
[29]
ALAWIYE T, BABALOLA O. Metagenomic insight into the community structure and functional genes in the sunflower rhizosphere microbiome[J]. Agriculture, 2021, 11(2):167.DOI: 10.3390/agriculture11020167.
[30]
DENG L T, ZHAO M M, BI R X, et al. Insight into the influence of biochar on nitrification based on multi-level and multi-aspect analyses of ammonia-oxidizing microorganisms during cattle manure composting[J]. Bioresour Technol, 2021, 339:125515.DOI: 10.1016/j.biortech.2021.125515.
[31]
王福. 牡丹野生资源现状和引种驯化[J]. 中国花卉盆景, 2012(6):4-6.
WANG F. Present situation,introduction and domestication of wild peony resources[J]. China Flower & Penjing, 2012(6):4-6.
[32]
孙晓刚, 王莉莉, 郭太君. 土壤pH值对3个牡丹品种的生长及光合特性的影响[J]. 东北林业大学学报, 2016, 44(3):42-46.
SUN X G, WANG L L, GUO T J. Effect of soil pH on growth and photosynthetic characteristic of three Paeonia suffruticosa varieties[J]. J Northeast For Univ, 2016, 44(3):42-46.DOI: 10.13759/j.cnki.dlxb.20160118.028.
[33]
李怡, 程平, 余林, 等. 刚竹属3个竹种根际土壤微生物群落结构[J]. 世界竹藤通讯, 2020, 18(5):32-37.
LI Y, CHENG P, YU L, et al. Microbial community structure in rhizosphere soil of 3 bamboo species of Phyllostachys[J]. World Bamboo Rattan, 2020, 18(5):32-37.DOI: 10.12168/sjzttx.2020.05.005.
[34]
CHEN Y H, DAI Y, WANG Y L, et al. Distribution of bacterial communities across plateau freshwater lake and upslope soils[J]. J Environ Sci, 2016, 43:61-69.DOI: 10.1016/j.jes.2015.08.012.
[35]
LI W K, NIU S K, LIU X D, et al. Short-term response of the soil bacterial community to differing wildfire severity in Pinus tabulaeformis stands[J]. Sci Rep, 2019, 9:1148.DOI: 10.1038/s41598-019-38541-7.
[36]
AZARBAD H, NIKLINSKA M, LASKOWSKI R, et al. Microbial community composition and functions are resilient to metal pollution along two forest soil gradients[J]. FEMS Microbiol Ecol, 2015, 91(1):1-11.DOI: 10.1093/femsec/fiu003.
[37]
SHENG P, YU Y Z, ZHANG G H, et al. Bacterial diversity and distribution in seven different estuarine sediments of Poyang Lake,China[J]. Environ Earth Sci, 2016, 75(6):1-9.DOI: 10.1007/s12665-016-5346-6.
[38]
WANG C, DONG D, WANG H S, et al. Metagenomic analysis of microbial consortia enriched from compost:new insights into the role of Actinobacteria in lignocellulose decomposition[J]. Biotechnol Biofuels, 2016, 9(1):22.DOI: 10.1186/s13068-016-0440-2.
[39]
SOUSA R M S, MENDES L W, ANTUNES J E L, et al. Diversity and structure of bacterial community in rhizosphere of Lima bean[J]. Appl Soil Ecol, 2020, 150:103490.DOI: 10.1016/j.apsoil.2019.103490.
[40]
LIN Y X, YE G P, LUO J F, et al. Nitrosospira cluster 8a plays a predominant role in the nitrification process of a subtropical ultisol under long-term inorganic and organic fertilization[J]. Appl Environ Microbiol, 2018, 84(18):1031-1038.DOI: 10.1128/aem.01031-18.
[41]
WANG C, TANG K X, DAI Y, et al. Identification,characterization,and site-specific mutagenesis of a thermostable ω-transaminase from Chloroflexi bacterium[J]. ACS Omega, 2021, 6(26):17058-17070.DOI: 10.1021/acsomega.1c02164.
[42]
ARSHAD A, DALCIN M P, FRANK J, et al. Mimicking microbial interactions under nitrate-reducing conditions in an anoxic bioreactor: enrichment of novel Nitrospirae bacteria distantly related to Thermodesulfovibrio[J]. Environ Microbiol, 2017, 19(12):4965-4977.DOI: 10.1111/1462-2920.13977.
[43]
KRZYZANOWSKA D M, IWANICKI A, CZAJKOWSKI R, et al. High-quality complete genome resource of tomato rhizosphere strain Pseudomonas donghuensis P482,a representative of a species with biocontrol activity against plant pathogens[J]. Mol Plant Microbe Interact, 2021, 34(12):1450-1454.DOI: 10.1094/MPMI-06-21-0136-A.
PDF(4132 KB)

Accesses

Citation

Detail

Sections
Recommended
The full text is translated into English by AI, aiming to facilitate reading and comprehension. The core content is subject to the explanation in Chinese.

/