An improved CART model for leaf and wood classification from LiDAR point clouds of Quercus glauca individual trees

PAN Zhengshang, MA Kaisen, LONG Yi, LAI Zhengui, SUN Hua

JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2024, Vol. 48 ›› Issue (4) : 123-131.

PDF(3088 KB)
PDF(3088 KB)
JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2024, Vol. 48 ›› Issue (4) : 123-131. DOI: 10.12302/j.issn.1000-2006.202211006

An improved CART model for leaf and wood classification from LiDAR point clouds of Quercus glauca individual trees

Author information +
History +

Abstract

【Objective】Due to the complex structure and features, traditional classification models for tree branches and leaf point clouds typically face several problems, including poor stability, low accuracy, model overfitting, and high computational costs. In this study, we propose an improved CART (classification and regression tree) model for leaf and branch classification based on Quercus glauca individual tree point cloud data from terrestrial laser LiDAR.【Method】First, the feature descriptor was constructed according to the neighborhood points, and the optimal value of the neighborhood search parameter was then determined. The CART model was improved by gradually introducing variables and adjusting the structure of the decision tree. The classification results of the improved CART model were compared with those of the Logistics regression and K-nearest neighbor (KNN) models.【Result】The accuracy of the improved CART model using the test data increased after introducing the feature descriptors as variables, exceeding that of the Logistics regression and KNN model by 13.1% and 13.6%, respectively. Moreover, the improved CART model exhibited higher accuracy, better stability, and marked reduced model size following the improvement. In particular, the model size was reduced by 99.9% compared with before the improvement, while the data training time was only 51.3% of that before the adjustment. The comprehensive evaluation index of the improved CART model was approximately 0.9 on both trunk and leaf data, with the difference between accuracy on train data and test data lower than 0.001, indicating no overfitting.【Conclusion】The improved CART model has a high accuracy and stability, and achieves good classification results on small samples. This study provides a methodological reference for the accurate and rapid classification of trunk and leaf point clouds from terrestrial laser LiDAR.

Key words

terrestrial laser LiDAR / point cloud classification / point cloud features / classification and regression tree

Cite this article

Download Citations
PAN Zhengshang , MA Kaisen , LONG Yi , et al . An improved CART model for leaf and wood classification from LiDAR point clouds of Quercus glauca individual trees[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2024, 48(4): 123-131 https://doi.org/10.12302/j.issn.1000-2006.202211006

References

[1]
TAO S L, GUO Q H, XU S W, et al. A geometric method for wood-leaf separation using terrestrial and simulated lidar data[J]. Photogram Engng Rem Sens, 2015, 81(10):767-776.DOI: 10.14358/pers.81.10.767.
[2]
杨必胜, 董震. 点云智能研究进展与趋势[J]. 测绘学报, 2019, 48(12):1575-1585.
YANG B S, DONG Z. Progress and perspective of point cloud intelligence[J]. Acta Geod Cartogr Sin, 2019, 48(12):1575-1585.DOI: 10.11947/j.AGCS.2019.20190465.
[3]
孙圆, 林秀云, 熊金鑫, 等. 基于地面激光强度校正数据的单木枝叶分离[J]. 中国激光, 2021, 48(1):0104001.
SUN Y, LIN X Y, XIONG J X, et al. Separation of single wood branches and leaves based on corrected TLS intensity data[J]. Chin J Lasers, 2021, 48(1):0104001.DOI: 10.3788/CJL202148.0104001.
[4]
CALDERS K, DISNEY M I, ARMSTON J, et al. Evaluation of the range accuracy and the radiometric calibration of multiple terrestrial laser scanning instruments for data interoperability[J]. IEEE Trans Geosci Remote Sens, 2017, 55(5):2716-2724.DOI: 10.1109/TGRS.2017.2652721.
[5]
夏国芳, 胡春梅, 曹毕铮, 等. 激光入射角度对点云反射强度的影响研究[J]. 激光杂志, 2016, 37(4):11-13.
XIA G F, HU C M, CAO B Z, et al. Study on the influence of laser incident angle on the reflection intensity of the point cloud[J]. Laser J, 2016, 37(4):11-13.DOI: 10.14016/j.cnki.jgzz.2016.04.011.
[6]
曹伟, 陈动, 史玉峰, 等. 激光雷达点云树木建模研究进展与展望[J]. 武汉大学学报(信息科学版), 2021, 46(2):203-220.
CAO W, CHEN D, SHI Y F, et al. Progress and prospect of LiDAR point clouds to 3D tree models[J]. Geomat Inf Sci Wuhan Univ, 2021, 46(2):203-220.DOI: 10.13203/j.whugis20190275.
[7]
黄亮, 许文雅, 谭帅. 树木三维点云的枝叶分割方法[J]. 北京测绘, 2022, 36(1):18-22.
HUANG L, XU W Y, TAN S. 3D point cloud segmentation method for branches and leaves of trees[J]. Beijing Surv Mapp, 2022, 36(1):18-22.DOI: 10.19580/j.cnki.1007-3000.2022.01.004.
[8]
FARMAKIS I, BONNEAU D, HUTCHINSON D J, et al. Supervoxel-based multi-scale point cloud segmentation using fnea for object-oriented rock slope classification using TLS[J]. Int Arch Photogramm Remote Sens Spatial Inf Sci, 2020, 43:1049-1056.DOI: 10.5194/isprs-archives-xliii-b2-2020-1049-2020.
[9]
林筱涵, 李爱农, 边金虎, 等. 基于网络图的地基激光雷达复杂树木点云枝叶分离方法[J]. 遥感技术与应用, 2022, 37(1):161-172.
LIN X H, LI A N, BIAN J H, et al. A method for separating leaf and wood components of complex tree point cloud data based on network graph with terrestrial laser scanning[J]. Remote Sens Technol Appl, 2022, 37(1):161-172.DOI: 10.11873/j.issn.1004-0323.2022.1.0161.
[10]
WANG D, MOMO T S, CASELLA E. LeWoS:a universal leaf-wood classification method to facilitate the 3D modelling of large tropical trees using terrestrial LiDAR[J]. Me-thods Ecol Evol, 2020, 11(3):376-389.DOI: 10.1111/2041-210x.13342.
[11]
WANG D, HOLLAUS M, PFEIFER N. Feasibility of machine learning methods for separating wood and leaf points from terrestrial laser scanning data[J]. ISPRS Ann Photogramm Remote Sens Spatial Inf Sci, 2017, IV-2/W4:157-164.DOI: 10.5194/isprs-annals-iv-2-w4-157-2017.
[12]
VICARI M B, DISNEY M, WILKES P, et al. Leaf and wood classification framework for terrestrial LiDAR point clouds[J]. Methods Ecol Evol, 2019, 10(5):680-694.DOI: 10.1111/2041-210x.13144.
[13]
QI C R, YI L, SU H, et al. PointNet++:deep hierarchical feature learning on point sets in a metric space[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. December,2017, Long Beach,California,USA: ACM, 2017:5105-5114.DOI: 10.5555/3295222.3295263.
[14]
赵江洪, 窦新铜, 曹月娥, 等. 一种基于分割结果实现三维点云分类的方法[J]. 测绘科学, 2022, 47(3):85-95.
ZHAO J H, DOU X T, CAO Y E, et al. A method for 3D point cloud classification based on segmentation results[J]. Sci Surv Mapp, 2022, 47(3):85-95.DOI: 10.16251/j.cnki.1009-2307.2022.03.012.
[15]
ZHOU J J, WEI H Q, ZHOU G Y, et al. Separating leaf and wood points in terrestrial laser scanning data using multiple optimal scales[J]. Sensors, 2019, 19(8):1852.DOI: 10.3390/s19081852.
[16]
汪献义, 邢艳秋, 尤号田, 等. 基于近邻几何特征的TLS林分点云分类研究[J]. 北京林业大学学报, 2019, 41(6):138-146.
WANG X Y, XING Y Q, YOU H T, et al. TLS point cloud classification of forest based on nearby geometric features[J]. J Beijing For Univ, 2019, 41(6):138-146.DOI: 10.13332/j.1000-1522.20180308.
[17]
麻卫峰, 王金亮, 张建鹏, 等. 一种改进法向量估算的点云特征提取[J]. 测绘科学, 2021, 46(11):84-90,146.
MA W F, WANG J L, ZHANG J P, et al. Feature extraction from point cloud based on improved normal vector[J]. Sci Surv Mapp, 2021, 46(11):84-90,146.DOI: 10.16251/j.cnki.1009-2307.2021.11.012.
[18]
梁冲. 面向树木特征提取的室外场景点云数据语义分类[D]. 南京: 南京师范大学, 2021.
LIANG C. Semantic classification of outdoor scenic spot pointcloud data for tree feature extraction[D]. Nanjing: Nanjing Normal University, 2021.
[19]
ZHU X, SKIDMORE A K, DARVISHZADEH R, et al. Foliar and woody materials discriminated using terrestrial LiDAR in a mixed natural forest[J]. Int J Appl Earth Obs Geoinf, 2018, 64:43-50.DOI: 10.1016/j.jag.2017.09.004.
[20]
卢晓艺, 云挺, 薛联凤, 等. 基于树木激光点云的有效特征抽取与识别方法[J]. 中国激光, 2019, 46(5):411-422.
LU X Y, YUN T, XUE L F, et al. Effective feature extraction and identification method based on tree laser point cloud[J]. Chin J Lasers, 2019, 46(5):411-422.DOI: 10.3788/CJL201946.0510002.
[21]
PATEL H H, PRAJAPATI P. Study and analysis of decision tree based classification algorithms[J]. Ijcse, 2018, 6(10):74-78.DOI: 10.26438/ijcse/v6i10.7478.
[22]
王艳秋, 徐传飞, 于戈, 等. 一种面向不确定对象的可见k近邻查询算法[J]. 计算机学报, 2010, 33(10):1943-1952.
WANG Y Q, XU C F, YU G, et al. Visible k-nearest neighbor queries over uncertain data[J]. Chin J Comput, 2010, 33(10):1943-1952.DOI: 10.3724/SP.J.1016.2010.01943.
[23]
刘刚, 尹一涵, 郑智源, 等. 基于三维点云的群体樱桃树冠层去噪和配准方法[J]. 农业机械学报, 2022, 53(S2):1-11.
LIU G, YIN Y H, ZHENG Z Y, et al. Denoising and registration method of group cherry trees canopy based on 3D point cloud[J]. Trans Chin Soc Agric Mach, 2022, 53(S2):1-11.DOI: 10.6041/j.issn.1000-1298.2022.s2.021.
[24]
张卉冉, 董震, 杨必胜, 等. 点云压缩研究进展与趋势[J]. 武汉大学学报(信息科学版), 2023, 48(2):192-205.
ZHANG H R, DONG Z, YANG B S, et al. Progress and perspectives of point cloud compression[J]. Geomatics and Information Science of Wuhan University, 2023, 48(2):192-205.DOI: 10.13203/j.whugis20210103.
[25]
CHENG X, ZENG M, LIN J P, et al. Efficient L0 resampling of point sets[J]. Comput Aided Geom Des, 2019, 75:101790.DOI: 10.1016/j.cagd.2019.101790.
[26]
DONG Z, YANG B S, LIANG F X, et al. Hierarchical registration of unordered TLS point clouds based on binary shape context descriptor[J]. ISPRS J Photogramm Remote Sens, 2018, 144:61-79.DOI: 10.1016/j.isprsjprs.2018.06.018.
[27]
张继超, 刘宁, 宋伟东, 等. 一种特征选择的全极化雷达影像分类方法[J]. 测绘科学, 2022, 47(6):127-134.
ZHANG J C, LIU N, SONG W D, et al. A fully polarimetric radar image classification method based on feature selection[J]. Sci Surv Mapp, 2022, 47(6):127-134.DOI: 10.16251/j.cnki.1009-2307.2022.06.016.
[28]
卢华清, 伍吉仓, 张子健. 面向地基激光点云的树木枝叶分离[J]. 中国激光, 2022, 49(23):156-167.
LU H Q, WU J C, ZHANG Z J. Tree branch and leaf separation facing TLS point cloud[J]. Chin J Lasers, 2022, 49(23):156-167. DOI: 10.3788/CJL.202249.2310001.
[29]
BECKER C, ROSINSKAYA E, HÄNI N, et al. Classification of aerial photogrammetric 3D point clouds[J]. Photogramm Eng Remote Sensing, 2018, 84(5):287-295.DOI: 10.14358/pers.84.5.287.
[30]
邢艳秋, 蔡硕, 汪献义. 采用多尺度近邻体素特征的TLS林分点云分类[J]. 遥感信息, 2021, 36(5):1-7.
XING Y Q, CAI S, WANG X Y. TLS point cloud classification of forest by multi-scale neighbor voxel features[J]. Remote Sens Inf, 2021, 36(5):1-7.DOI: 10.3969/j.issn.1000-3177.2021.05.001.
PDF(3088 KB)

Accesses

Citation

Detail

Sections
Recommended
The full text is translated into English by AI, aiming to facilitate reading and comprehension. The core content is subject to the explanation in Chinese.

/