Effects of thinning on Larix olgensis plantation stem form based on TLS

GAO Xieyu, DONG Lihu, HAO Yuanshuo

JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2023, Vol. 47 ›› Issue (6) : 85-94.

PDF(26559 KB)
PDF(26559 KB)
JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2023, Vol. 47 ›› Issue (6) : 85-94. DOI: 10.12302/j.issn.1000-2006.202211012

Effects of thinning on Larix olgensis plantation stem form based on TLS

Author information +
History +

Abstract

【Objective】 The study explored the feasibility of terrestrial laser scanning (TLS) technology to evaluate the stem form, and analyzed the influence of different thinning measures on the stem form of Larix olgensis plantations. 【Method】 Five sample plots of L. olgensis plantations with different thinning measures in the Mengjiagang Forest Farm, Jiamusi City, Heilongjiang Province, were used to acquire TLS data. The preprocessed point clouds were first segmented into individual trees and classified into stem and non-stem points. Parameters that included diameter breast height, tree height, and diameter at different heights were further extracted. Finally, the indices of individual tree stem forms were calculated, theoretical timber was made, and the effects of different thinning measures on L. olgensis plantation stem form and stand economic value were analyzed. 【Result】 Compared to field-measured trees, the accuracy of individual tree characteristic parameters extracted based on TLS data was satisfactory. The error results of diameter breast height showed that ME was only -0.39 cm, MAPE was 2.86%, ME extracted from tree height was -0.26 m, and MAPE was 3.12%. All thinning measures improved the diameter breast height and volume growth of individual trees. There was no significant difference in tree height among the different thinning measures. The stem form indices of trees, such as and the volume distribution mode, differed in the different thinning methods, with the stem volume more distributed in the middle of the stem. Stem forms of different sizes did not significantly differ at the same site. The different thinning methods had no effect on the degree of tree root extension. Different thinning measures improved the economic value of stands in different degrees. 【Conclusion】 TLS exhibits high precision in extracting parameters of individual trees and can be used to obtain the dry shape characteristics of individual trees without destructive sampling. Different thinning measures have different effects on tree stem form and economic value of stands. The two high-intensity thinning measures can maximize the economic value of stands. These results provide a reference for forestry production practices in northeast China.

Key words

Larix olgensis / thinning measestrial / terrestrial laser scanning(TLS) / stem form

Cite this article

Download Citations
GAO Xieyu , DONG Lihu , HAO Yuanshuo. Effects of thinning on Larix olgensis plantation stem form based on TLS[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2023, 47(6): 85-94 https://doi.org/10.12302/j.issn.1000-2006.202211012

References

[1]
韩飞. 落叶松人工林削度方程的研究[D]. 哈尔滨: 东北林业大学, 2010.
HAN F. The study of taper equation for Larix Olgensis plantation[D]. Harbin: Northeast Forest University, 2010.
[2]
SANQUETTA M N, MCTAGUE J P, FERRACO S H, et al. What factors should be accounted for when developing a generalized taper function for black wattle trees?[J]. Canadian Journal of Forest Research, 2020, 50(11): 1113-1123. DOI: 10.1139/cjfr-2020-0163.
[3]
LIU Y, YUE C F, WEI X H, et al. Tree profile equations are significantly improved when adding tree age and stocking degree: an example for Larix gmelinii in the Greater Khingan Mountains of Inner Mongolia, northeast China[J]. European Journal of Forest Research, 2020, 139(3): 443-458.DOI: 10.1007/s10342-020-01261-z.
[4]
LI R, WEISKITTEL A R. Comparison of model forms for estimating stem taper and volume in the primary conifer species of the north American Acadian region[J]. Annals of Forest Science, 2010, 67(3): 302. DOI: 10.1051/forest/2009109.
[5]
MÄKINEN H, ISOMÄKI A. Thinning intensity and growth of Norway spruce stands in Finland[J]. Forestry, 2004, 77(4): 349-364. DOI: 10.1093/forestry/77.4.349.
[6]
BEESE W J, ARNOTT J T. Montane alternative silvicultural systems (MASS): establishing and managing a multi-disciplinary, multi-partner research site[J]. The Forestry Chronicle, 1999, 75(3): 413-416. DOI: 10.5558/tfc75413-3
[7]
IGNACIO B, MARTA P, RAFAEL C, et al. Effect of stand structure on Stone pine (Pinus pinea L.) regeneration dynamics[J]. Journal of Forest Researc. 2008, 81(5): 617-629. DOI: 10.1093/forestry/cpn037.
[8]
陈哲, 魏浩亮, 周庆营, 等. 抚育间伐对华北落叶松人工林林分结构的影响[J]. 中南林业科技大学学报, 2022, 42(5): 54-64.
CHEN Z, WEI H L, ZHOU Q Y, et al. Influence of tending and thinning on the stand structure of Larix principis-rupprechtii plantations[J]. Journal of Central South University of Forestry & Technology, 2022, 42(5): 54-64. DOI:10.14067/j.cnki.1673-923x.2022.05.006.
[9]
LIANG X, KANKARE V, YU X, et al. Automated stem curve measurement using terrestrial laser scanning[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(3): 1739-1748. DOI: 10.1109/TGRS.2013.2253783.
[10]
KANKARE V, HOLOPAINEN M, VASTARANTA M, et al. Individual tree biomass estimation using terrestrial laser scanning[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2013, 75: 64-75. DOI: 10.1016/j.isprsjprs.2012.10.003.
[11]
DISNEY M, HOLOPAINEN M, VASTARANTA M, et al. Fast automatic precision tree models from terrestrial laser scanner data[J]. Remote Sensing, 2013, 5(2): 491-520. DOI: 10.3390/rs5020491.
[12]
SAARINEN N, KANKARE V, VASTARANTA M, et al. Feasibility of terrestrial laser scanning for collecting stem volume information from single trees[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2017, 123: 140-158. DOI: 10.1016/j.isprsjprs.2016.11.012.
[13]
HACKENBERG J, MORHART C, SHEPPARD J, et al. Highly accurate tree models derived from terrestrial laser scan data: a method description[J]. Forests, 2014, 5(5): 1069-1105. DOI: 10.3390/f5051069.
[14]
SAARINEN N, KANKARE V, PYÖRÄLÄ J, et al. Assessing the effects of sample size on parametrizing a taper curve equation and the resultant stem-volume estimates[J]. Forests, 2019, 10(10):848-868. DOI: 10.3390/f10100848.
[15]
VILLE L, YRTTIMAA T, KANKARE V, et al. Revealing changes in the stem form and volume allocation in diverse boreal forests using two-date terrestrial laser scanning[J]. Forests, 2021, 12(7): 835-855. DOI: 10.3390/F12070835.
[16]
顾海波, 熊子月, 温小荣, 等. 基于地基激光数据的杨树干形分析[J]. 中南林业科技大学学报, 2019, 39(6): 72-77.
GU H B, XIONG Z Y, WEN X R, et al. Analysis of poplar stem form based on terrestrial laser scan[J]. Journal of Central South University of Forestry & Technology, 2019, 39(6): 72-77. DOI: 10.14067/j.cnki.1673-923x.2019.06.011.
[17]
SAARINEN N, KANKARE V, YRTTIMAA T, et al. Assessing the effects of thinning on stem growth allocation of individual Scots pine trees[J]. Forest Ecology and Management, 2020, 474: 118134. DOI: 10.1016/j.foreco.2020.118344.
[18]
孙志虎, 王秀琴, 陈祥伟. 不同抚育间伐强度对落叶松人工林生态系统碳储量影响[J]. 北京林业大学学报, 2016, 38(12): 1-13.
SUN Z H, WANG X Q, CHEN X W. Effects of thinning intensity on carbon storage of Larix olgensis plantation ecosystem[J]. Journal of Beijing Forestry University, 2016, 38(12): 1-13. DOI: 10.13332/j.1000-1522.20160016.
[19]
ZHAO X, GUO Q, SU Y, et al. Improved progressive TIN densification filtering algorithm for airborne LiDAR data in forested areas[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 117: 79-91. DOI: 10.1016/j.isprsjprs.2016.03.016.
[20]
TAO S, WU F, GUO Q, et al. Segmenting tree crowns from terrestrial and mobile LiDAR data by exploring ecological theories[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2015, 110: 66-76. DOI: 10.1016/j.isprsjprs.2015.10.007.
[21]
YRTTIMAA T, SAARINEN N, KANKARE V, et al. Investigating the feasibility of multi-scan terrestrial laser scanning to characterize tree communities in southern boreal forests[J]. Remote Sensing, 2019, 11(12): 1423. DOI: 10.3390/rs11121423.
[22]
李凤日. 测树学[M]. 北京: 中国林业出版社, 2019: 1-397.
LI F R. Forest mensuration[M]. Beijing: China Forestry Publishing House, 2019: 1-397.
[23]
JONSSON B. Thinning response functions for single trees of Pinus sylvestris L. and Picea abies (L.) Karst[J]. Scandinavian Journal of Forest Research, 1995, 10(1/4): 353-369. DOI: 10.1080/02827589509382902.
[24]
TOMMI R, MARTTI V. Precommercial thinning in naturally regenerated Scots pine stands in northern Finland[J]. Silva Fennica, 1997, 31(4): 401-415. DOI: 10.14214/sf.a8537.
[25]
VALINGER E, SJÖGREN H, NORD G, et al. Effects on stem growth of Scots pine 33 years after thinning and/or fertilization in northern Sweden[J]. Scandinavian Journal of Forest Research, 2019, 34(1): 33-38. DOI: 10.1080/02827581.2018.1545920.
[26]
MÄKINEN H, ISOMÄKI A. Thinning intensity and long-term changes in increment and stem form of Scots pine trees[J]. Forest Ecology and Management, 2004, 203(1): 21-34. DOI: 10.1016/j.foreco.2004.07.028.
[27]
MÄKINEN H, HYNYNEN J, ISOMÄKI A. Intensive management of Scots pine stands in southern Finland: first empirical results and simulated further development[J]. Forest Ecology and Management, 2005, 215(1): 37-50. DOI: 10.1016/j.foreco.2005.03.069.
[28]
王树力, 刘大兴. 落叶松人工林林分结构与数量成熟龄的研究[J]. 东北林业大学学报, 1992, 20(2): 1-8.
WANG S L, LIU D X. Study on the stand constitution and the quantitative mature age of larch plantation[J]. Journal of Northeast Forestry University, 1992, 20(2): 1-8. DOI:10.13759/j.cnki.dlxb.1992.02.001
[29]
孙楠, 张怡春, 赵眉芳. 长白落叶松人工林根系生物量及其垂直分布特征[J]. 森林工程, 2021, 37(6):17-24, 67.
SUN N, ZHANG Y C, ZHAO M F. Root biomass and vertical distribution characteristics of larch plantation[J]. Forest Engineering, 2021, 37(6):17-24, 67.
[30]
SMITH D, LARSON B, KELTY M, et al. The practice of silviculture: applied forest ecology[M]. New York: John Wiley and Sons, Inc., 1997.
[31]
VALENTINE H T, GREGOIRE T G. A switching model of bole taper[J]. Canadian Journal of Forest Research, 2001, 31(8): 1400-1409. DOI: 10.1139/x01-061.
[32]
LIANG X, KANKARE V, HYYPPÄ J, et al. Terrestrial laser scanning in forest inventories[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 115:63-77. DOI: 10.1016/j.isprsjprs.2016.01.006.
[33]
MÄKINEN H, ISOMÄKI A. Thinning intensity and long-term changes in increment and stem form of Norway spruce trees[J]. Forest Ecology and Management, 2004, 201(2): 295-309. DOI: 10.1016/j.foreco.2004.07.017.

Footnotes

PDF(26559 KB)

Accesses

Citation

Detail

Sections
Recommended
The full text is translated into English by AI, aiming to facilitate reading and comprehension. The core content is subject to the explanation in Chinese.

/