Effects of acid rain-based transformation on Cunninghamia lanceolata fine root growth and soil nutrient content

DING Yong, LIU Xin, ZHANG Jinchi, WANG Yuhao, CHEN Meiling, LI Tao, LIU Xiaowu, ZHOU Yuexiang, SUN Lianhao, LIAO Yi

JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2024, Vol. 48 ›› Issue (3) : 90-98.

PDF(2264 KB)
PDF(2264 KB)
JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2024, Vol. 48 ›› Issue (3) : 90-98. DOI: 10.12302/j.issn.1000-2006.202211030

Effects of acid rain-based transformation on Cunninghamia lanceolata fine root growth and soil nutrient content

Author information +
History +

Abstract

【Objective】 This study explored the effects of acid rain-based changes in soil nutrient content and Chinese fir (Cunninghamia lanceolata) fine root growth, to provide a theoretical basis for improving soil acidification of C. lanceolata plantations in acid rain-stressed areas.【Method】 A one-year simulated acid rain field experiment was conducted at the Tongshan Forest Farm in Nanjing, Jiangsu Province. Three acid rain acidity levels (pH=4.5, 3.5, and 2.5) were applied with each of three acid rain types: sulfuric acid rain, with 5∶1 concentration ratio of sulfur (S, SO42-) to nitrogen (N, NO3-); mixed acid rain, with 1∶1 S/N ratio; nitric acid rain, with 1∶5 S/N ratio; and a control (CK, pH=6.6, local river water). There were thus 10 total experimental treatments. Outcome measures of acid rain stress included soil chemical properties, fine root physiological characteristics, and fine root element contents. Correlations and structural equation model analyses were used to explore the direct and indirect effects of acid rain type on C. lanceolata fine root growth.【Result】 With decreasing acid rain pH and S/N ratios, the fine root biomass and root activity of C. lanceolata decreased. The catalase activity of all strong acid rain treatments (pH=2.5) was lower than that of other acid rain treatments. Compared with nitric acid rain types, the catalase activity incrementally decreased and was lower than CK; Mg and Al content, as well as the c(Ca)/c(Al) and c(Mg)/c(Al) in fine roots also differed. Compared with CK, all acid rain treatments increased fine root Ca and Al contents, while K content decreased with acid rain stress. However, there were not significant differences in soil total C, total N, C/N ratio, total S, available P, or available K among S/N ratios or pH levels. Correlation analysis showed that soil pH was extremely significant positively correlated with c(Mg)/c(Al), root biomass, and root activity (P<0.01), and that root biomass was significantly positively correlated with peroxidase, catalase, but extremely significant negative correlated with Al content (P<0.05). 【Conclusion】 After one year of experimental acid rain stress, acidity significantly impacted both soil and C. lanceolata fine roots. Acid rain type affected fine roots more strongly than it affected soil. As the S/N ratio decreased, the inhibitory effect of acid rain on C. lanceolata fine root growth was more pronounced.

Key words

Cunninghamia lanceolata / acid rain / sulfur to nitrogen ratio / fine root biomass / soil nutrient

Cite this article

Download Citations
DING Yong , LIU Xin , ZHANG Jinchi , et al . Effects of acid rain-based transformation on Cunninghamia lanceolata fine root growth and soil nutrient content[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2024, 48(3): 90-98 https://doi.org/10.12302/j.issn.1000-2006.202211030

References

[1]
BORER E T, STEVENS C J. Nitrogen deposition and climate:an integrated synthesis[J]. Trends Ecol Evol, 2022, 37(6): 541-552. DOI:10.1016/j.tree.2022.02.013.
[2]
盛炜彤. 关于我国人工林长期生产力的保持[J]. 林业科学研究, 2018, 31(1): 1-14.
SHENG W T. On the maintenance of long-term productivity of plantation in China[J]. Forest Research, 2018, 31(1): 1-14. DOI: 10.13275/j.cnki.lykxyj.2018.01.001.
[3]
HENDRICKS J J, NADELHOFFER K J, ABER J D. Assessing the role of fine roots in carbon and nutrient cycling[J]. Tree, 1993, 8(5): 174-178. DOI:10.1016/0169-5347(93)90143-d.
[4]
黄爱梅, 方毅, 孙俊, 等. 武夷山不同海拔毛竹细根功能性状研究[J]. 生态学报, 2023, 43(1): 1-10.
HUANG A M, FANG Y, SUN J, et al. Fine root traits of Phyllostachys edulis at diferent alitudes in Wuyi Mountain[J]. Acta Ecologica Sinica, 2023, 43(1): 1-10. DOI:10.5846/stxb202112143536.
[5]
张治军. 重庆酸雨区马尾松生物量和根系空间分布特征研究[D]. 保定: 河北农业大学, 2006.
ZHANG Z J. Study on the Spatial characteristics of Pinus massoniana biomass and root distribution in acid rain area Chongqing[D]. Baoding: Hebei Agricultural University, 2006. DOI:10.7666/d.y933672.
[6]
WEI H, LIU W, ZHANG J, et al. Effects of simulated acid rain on soil fauna community composition and their ecological niches[J]. Environ Pollut, 2017, 220(Pt A): 460-468. DOI:10.1016/j.envpol.2016.09.088.
[7]
LIU M X, HUANG X, SONG Y, et al. Ammonia emission control in China would mitiCate haze pollution and nitrogen deposition, but worsen acid rain[J]. PNAS, 2019, 116(16): 7760-7765. DOI:10.1073/pnas.1814880116.
[8]
MORRISON E W, PRINGLE A, VAN DIEPEN L T A, et al. Simulated nitrogen deposition favors stress-tolerant fungi with low potential for decomposition[J]. Soil Biol Biochem, 2018, 125: 75-85. DOI:10.1016/j.soilbio.2018.06.027.
[9]
李沁宇, 刘鑫, 张金池. 长三角区域酸雨类型转变趋势研究[J]. 南京林业大学学报(自然科学版), 2021, 45(1): 168-174.
LI Q Y, LIU X, ZHANG J C. Changing trends of acid rain types in the Yangtze River Delta region[J]. J Nanjing For Univ (Nat Sci Ed), 2021, 45(1): 168-174. DOI: 10.12302/j.issn.1000-2006.201908029.
[10]
ZHOU M J, HU H B, WANG J L, et al. Nitric acid rain increased bacterial community diversity in north subtropical forest soil[J]. Forests, 2022, 13(9): 1349. DOI:10.3390/f13091349.
[11]
LIU X, ZHAO W R, MENG M J, et al. Comparative effects of simulated acid rain of different ratios of SO42- to NO3- on fine root in subtropical plantation of China[J]. Science of the Total Envi-ronmen, 2018, 618: 336-346. DOI:10.1016/j.scitotenv.2017.11.073.
[12]
LV Y N, WANG C Y, JIA Y Y, et al. Effects of sulfuric, nitric, and mixed acid rain on litter decomposition,soil microbial biomass, and enzyme activities in subtropical forests of China[J]. Appl Soil Ecol, 2014, 79: 1-9. DOI: 10.1016/j.apsoil.2013.12.002.
[13]
LIU X, ZHANG B, ZHAO W R, et al. Comparative effects of sulfuric and nitric acid rain on litter decomposition and soil microbial community in subtropical plantation of Yangtze River Delta region[J]. Sci Total Environ, 2017, 601: 669-678. DOI:10.1016/j.scitotenv.2017.05.151.
[14]
KYAING M, 顾立江, 程红梅. 植物中硝酸还原酶和亚硝酸还原酶的作用[J]. 生物技术进展, 2011, 1(3): 159-164.
KYAING M, GU L J, CHENG H M. The role of nitrate reductase and nitrite reductase in plant[J]. Curr Biotechnol, 2011, 1(3): 159-164. DOI:CNKI:SUN:SWJZ.0.2011-03-003.
[15]
许振柱, 周广胜. 植物氮代谢及其环境调节研究进展[J]. 应用生态学报, 2004, 15(3): 511-516.
XU Z Z, ZHOU G S. Research advance in nitrogen metabolism of plant and its environmental regulation[J]. Chinese Journal of Applied Ecology, 2004, 15(3): 511-516. DOI:CNKI:SUN:YYSB.0.2004-03-030.
[16]
QIAO F, ZHANG X M, LIU X, et al. Elevated nitrogen metabolism and nitric oxide production are involved in Arabidopsis resistance to acid rain[J]. Plant Physiology and Biochemistry, 2018, 127: 238-247. DOI: 10.1016/j.plaphy.2018.03.025.
[17]
DU E Z, DONG D, ZENG X T, et al. Direct effect of acid rain on leaf chlorophyll content of terrestrial plants in China[J]. Sci-ence of The Total Environment, 2017, 605: 764-769. DOI:10.1016/j.scitotenv.2017.06.044.
[18]
陈美玲, 刘鑫, 陈新峰, 等. 酸雨类型转变对杉木林土壤养分特征和微生物量碳氮的影响[J]. 浙江农林大学学报, 2022, 39(6): 1278-1288.
CHEN M L, LIU X, CHEN X F, et al. Effects of acid rain type change on soil nutrient characteristics and microbial C and N in the Cunninghamia lanceolata plantation[J]. Journal of Zhejiang A&F University, 2022, 39(6): 1278-1288. DOI:10.11833/j.issn.2095-0756.20220132.
[19]
赵文瑞. 酸雨酸度和硫氮比对麻栎细根生长及其主要组成物质的影响[D]. 南京: 南京林业大学, 2017.
ZHAO W R. Effects of acid rain acidity and sulfur-nitrogen ratio on fine root growth and its main components of Quercus acutissima[D]. Nanjing: Nanjing Forestry University, 2017. DOI:10.11707/j.1001-7488.20170418.
[20]
童贯和, 程滨, 胡云虎. 模拟酸雨及其酸化土壤对小麦幼苗生物量和某些生理活动的影响[J]. 作物学报, 2005, 31(9): 1207-1214.
TONG G H, CHENG B, HU Y H. Effect of simulated acid rain and its acidified soil on the biomass and some physioloqical activities of wheat seedlings[J]. Acta Agronomica Sinica, 2005, 31(9): 1207-1214. DOI:10.3321/j.issn:0496-3490.2005.09.018.
[21]
林妙君, 林敏丹, 许展颖, 等. 酸雨胁迫对水稻萌芽及幼苗生长的影响[J]. 广东农业科学, 2022, 49(4): 1-7.
LIN M J, LIN M D, XU Z Y, et al. Effects of acid rain on germination and seedling growth of rice[J]. Guangdong Agricultural Sciences, 2022, 49(4): 1-7. DOI:10.16768/j.issn.1004-874X.2022.04.001.
[22]
LIU H Y, REN X Q, ZHU J Z, et al. Effect of exogenous abscisic acid on morphology, growth and nutrient uptake of rice (Oryza sativa) roots under simulated acid rain stress[J]. Planta, 2018, 248(3): 647-659. DOI: 10.1007/s00425-018-2922-x.
[23]
JU S M, WANG Y K, WANG N N, et al. The effects of silicon and different types of acid rain on root growthand physiology activi-ty of Oryza sativa L. seedlings[J]. Bull Environ Contam Toxicol, 2020, 105(6): 967-971. DOI:10.1007/s00128-020-03046-x.
[24]
WANG T J, JIANG F, LI S, et al. Trends in air pollution during 1996-2003 and cross-border transport in city clusters over the Yangtze River Delta region of China[J]. Terr Atmos Ocean Sci, 2007, 18(5): 995-1009. DOI:10.3319/tao.2007.18.5.995(a).
[25]
张濛, 续高山, 滕志远, 等. 模拟酸雨对小黑杨幼苗生长和光合特性的影响[J]. 南京林业大学学报(自然科学版), 2021, 45(6): 57-64.
ZHANG M, XU G S, TENG Z Y, et al. Effects of simulated acid rain on growth and photosynthetic physiological characteristics of Populus simonii ×P. nigra[J]. J Nanjing For Univ (Nat Sci Ed), 2021, 45(6): 57-64. DOI:10.12302/j.issn.1000-2006.202003068.
[26]
REN X, ZHU J, LIU H, et al. Response of antioxidative system in rice (Oryza sativa) leaves to simulated acid rain stress[J]. Ecotoxicology and Environmental Safety, 2018, 148: 851-856. DOI:10.1016/j.ecoenv.2017.11.046.
[27]
KHAN M N, MOBIN M, ABBAS Z K, et al. Nitric oxide-induced synthesis of hydrogen sulfide alleviatesosmotic stress in wheat seedlings through sustaining antioxidant enzymes, osmolyte accumulation and cysteine homeostasis[J]. Nitric Oxide, 2017, 68: 91-102. DOI:10.1016/j.niox.2017.01.001.
[28]
LI W B, JIN C J, GUAN D X, et al. The effects of simulated nitrogen deposition on plant root traits: a meta-analysis[J]. Soil Biol Biochem, 2015, 82: 112-118. DOI:10.1016/j.soilbio.2015.01.001.
[29]
CHEN G T, TU L H, PENG Y, et al. Effect of nitrogen additions on root morphology and chemistry in a subtropical bamboo forest[J]. Plant Soil, 2017, 412(1): 441-451. DOI:10.1007/s11104-016-3074-z.
[30]
刘鑫. 长三角区域典型林分土壤及树木细根对酸雨的响应[D]. 南京: 南京林业大学, 2018.
LIU X. Effects of acid rain on soil and fine root of typical plantation in Yangtze River Delta region[D]. Nanjing: Nanjing Forestry University, 2018.
[31]
VELIKOVA V, YORDANOV I, EDREVA A. Oxidative stress and some antioxidant systems in acid rain-treated bean plants[J]. Plant Sci, 2000, 151(1): 59-66. DOI:10.1016/S0168-9452(99)00197-1.
[32]
乔芳. 拟南芥对三种类型模拟酸雨不同响应机制研究[D]. 厦门: 厦门大学, 2014.
QIAO F. Studies on differential mechanisms of Arabidopsis thaliana in response to three types of simulated acid rain[D]. Xiamen: Xiamen University, 2014.
[33]
孙业民, 马兰, 李朝周. 不同类型酸胁迫对云杉叶细胞膜及其保护系统损伤机制的比较[J]. 林业科学, 2012, 48(6): 56-62.
SUN Y M, MA L, LI C Z. Comparison on the damage mechanism of cell nembrane and its protective systems in Picea asperata leaves under different acid stress types[J]. Scientia Silvae Sinicae, 2012, 48(6): 56-62. DOI: 10.1007/s11783-011-0280-z.
[34]
MAO Q G, LU X K, ZHOU K J, et al. Effects of long-term nitrogen and phosphorus additions on soil acidification in an N-rich tropical forest[J]. Geoderma, 2017, 285: 57-63. DOI:10.1016/j.geoderma.2016.09.017.
PDF(2264 KB)

Accesses

Citation

Detail

Sections
Recommended
The full text is translated into English by AI, aiming to facilitate reading and comprehension. The core content is subject to the explanation in Chinese.

/