Designing of microsatellite primers for Quercus glauca and Q. glaucoides (Fagaceae) based on RAD-seq data

OUYANG Zeyi, LI Zhihui, MOU Honglin, JIANG Xiaolong, CHENG Yong, WU Jiyou

JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2024, Vol. 48 ›› Issue (6) : 62-70.

PDF(2132 KB)
PDF(2132 KB)
JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2024, Vol. 48 ›› Issue (6) : 62-70. DOI: 10.12302/j.issn.1000-2006.202212002

Designing of microsatellite primers for Quercus glauca and Q. glaucoides (Fagaceae) based on RAD-seq data

Author information +
History +

Abstract

【Objective】Quercus glauca and Q. glaucoides are valuable and dominant species in the subtropical evergreen broadleaf forests of East Asia. They represent typical geographical vicarious species with significant ecological and economic importance. Therefore, the development of SSR primers for these two species can facilitate the analysis of genetic patterns and genetic diversity for the management and resource development of evergreen broadleaf forests as well as provide a reference for the development of microsatellite markers across species.【Method】This study developed SSR primers based on RADseq data from three Q. glauca and three Q. glaucoides individuals, respectively. The sequencing data were filtered and extracted using the process_radtags model in Stacks 2.0b software and SciRoKo 3.4 software sequentially. SSR primers were designed using Primer premier V6.0 software.【Result】The sequences were clustered using pyRAD 3.0.66, identifying a total of 217 SSR loci, 35% (76) of which were polymorphic in both species. Twenty-eight SSR primer pairs were designed and validated in two Q. glauca populations and two Q. glaucoides populations (48 individuals in total) through nested polymerase chain reaction (PCR) amplification. The 28 SSR primer pairs are distributed across ten chromosomes of the Q. glauca genome and successfully amplified in Q. glauca and Q. glaucoides individuals, with an amplification rate of 90.7%. The SSR genotyping analysis detected a total of 176 alleles, with the number of alleles per primer ranging from 3 to 13, and an average of 6.29. The expected and observed heterozygosity of the primers ranged from 0.223 to 0.886 and from 0.159 to 0.830, respectively.【Conclusion】The universal microsatellite primers developed in this study using RADseq data for Q. glauca and Q. glaucoides provide a basis for further population genetics studies of these species. In addition, this study demonstrates that RADseq data can be employed to rapidly, efficiently, and be used to cost-effectively develop universal microsatellite primers for closely related species.

Key words

Quercus glauca / Quercus glaucoides / microsatellite / RAD-seq

Cite this article

Download Citations
OUYANG Zeyi , LI Zhihui , MOU Honglin , et al . Designing of microsatellite primers for Quercus glauca and Q. glaucoides (Fagaceae) based on RAD-seq data[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2024, 48(6): 62-70 https://doi.org/10.12302/j.issn.1000-2006.202212002

References

[1]
姜小龙. 福建青冈和岭南青冈系统发育关系及居群遗传结构[D]. 长沙: 中南林业科技大学, 2020.
JIANG X L. Phylogenetic relationship and population genetic structure of Quercus chungii and Q.championii[D]. Changsha: Central South University of Forestry & Technology, 2020.DOI:10.27662/d.cnki.gznlc.2020.000507.
[2]
DENK T, GRIMM G W, MANOS P S, et al. An updated infrageneric classification of the oaks:review of previous taxonomic schemes and synthesis of evolutionary patterns in Oaks Physiological Ecology.Exploring the Functional Diversity of Genus Quercus L.[M]. Cham:Springer, 2017,13-38. DOI: 10.1007/978-3-319-69099-5.
[3]
MANOS P S, DOYLE J J, NIXON K C. Phylogeny,biogeography,and processes of molecular differentiation in Quercus Subgenus Quercus (Fagaceae)[J]. Mol Phylogenet Evol, 1999, 12(3):333-349.DOI: 10.1006/mpev.1999.0614.
[4]
罗艳, 周浙昆. 青冈亚属植物的地理分布[J]. 云南植物研究, 2001, 23(1):1-16,28.
LUO Y, ZHOU Z K. Phytogeography of Quercus subg. Cyclobalanopsis[J]. Acta Bot Yunnanica, 2001, 23(1):1-16,28.
[5]
中国科学院中国植物志编辑委员会. 中国植物志-第四十二卷,第一分册[M]. 北京: 科学出版社,1993.
[6]
郭双兴. 云南临沧晚中新世邦卖组植物群[J]. 古生物学报, 2011, 50(3):353-408.
GUO S X. The late Miocene Bangmai flora from Lincang County of Yunnan,southwestern China[J]. Acta Palaeontol Sin, 2011, 50(3):353-408.DOI: 10.19800/j.cnki.aps.2011.03.008.
[7]
郭双兴. 四川西部高原上新世植物群[J]. 古生物学报, 1978, 17(3):343-350,373.
GUO S X. Pliocene floras of western Sichuan[J]. Acta Palaeontol Sin, 1978, 17(3):343-350,373.DOI: 10.19800/j.cnki.aps.1978.03.007.
[8]
罗冉, 吴委林, 张旸, 等. SSR分子标记在作物遗传育种中的应用[J]. 基因组学与应用生物学, 2010, 29(1):137-143.
LUO R, WU W L, ZHANG Y, et al. SSR marker and its application to crop genetics and breeding[J]. Genom Appl Biol, 2010, 29(1):137-143.DOI: 10.3969/gab.029.000137.
[9]
SELKOE K A, TOONEN R J. Microsatellites for ecologists:a practical guide to using and evaluating microsatellite markers[J]. Ecol Lett, 2006, 9(5):615-629.DOI: 10.1111/j.1461-0248.2006.00889.x.
[10]
DAVEY J W, HOHENLOHE P A, ETTER P D, et al. Genome-wide genetic marker discovery and genotyping using next-generation sequencing[J]. Nat Rev Genet, 2011, 12(7):499-510.DOI: 10.1038/nrg3012.
[11]
胡亚亚, 刘兰服, 冀红柳, 等. 简化基因组测序技术研究进展[J]. 江苏师范大学学报(自然科学版), 2018, 36(4):63-68.
HU Y Y, LIU L F, JI H L, et al. Research progress on the reduced-representation genome sequencing technique[J]. J Jiangsu Norm Univ (Nat Sci Ed), 2018, 36(4):63-68.DOI: 10.3969/j.issn.2095-4298.2018.04.012.
[12]
宁馨, 姜小龙, 邓敏, 等. 基于简化基因组数据开发岭南青冈微卫星引物[J]. 植物研究, 2020, 40(4):629-634.
NING X, JIANG X L, DENG M, et al. Development of microsatellite primers of Quercus championii with RAD-seq data[J]. Bull Bot Res, 2020, 40(4):629-634.DOI: 10.7525/j.issn.1673-5102.2020.04.018.
[13]
李慧, 刘东超, 徐瑞瑞, 等. 基于RAD-seq技术的金银花SSR标记开发及鉴定[J]. 北京林业大学学报, 2021, 43(6):108-117.
LI H, LIU D C, XU R R, et al. Development and identification of SSR markers based on RAD-seq of Lonicera japonica[J]. J Beijing For Univ, 2021, 43(6):108-117.DOI: 10.12171/j.1000-1522.20200337.
[14]
GAO Y, YIN S, LIU C, et al. A rapid approach for SSR development in Amorphophallus paeoniifolius using RAD-seq[J]. Taiwania, 2018, (63): 281-285.
[15]
王久利, 陈世龙, 邢睿, 等. 椭圆叶花锚简化基因组的SSR信息分析及SSR引物开发[J]. 植物研究, 2018, 38(2):292-297.
WANG J L, CHEN S L, XING R, et al. Simplified genome SSR information and development of SSR primers of Halenia ellipitica (Gentianaceae)[J]. Bull Bot Res, 2018, 38(2):292-297.DOI: 10.7525/j.issn.1673-5102.2018.02.018.
[16]
CATCHEN J M, AMORES A, HOHENLOHE P, et al. Stacks:building and genotyping loci De novo from short-read sequences[J]. G3 Genes|genomes|genetics, 2011, 1(3):171-182.DOI: 10.1534/g3.111.000240.
[17]
KOFLER R, SCHLÖTTERER C, LELLEY T. SciRoKo:a new tool for whole genome microsatellite search and investigation[J]. Bioinformatics, 2007, 23(13):1683-1685.DOI: 10.1093/bioinformatics/btm157.
[18]
EATON D A R. PyRAD:Assembly of de novo RADseq loci for phylogenetic analyses[J]. Bioinformatics, 2014, 30(13):1844-1849.DOI: 10.1093/bioinformatics/btu121.
[19]
SINGH V K, MANGALAM A K, DWIVEDI S, et al. Primer premier:program for design of degenerate primers from a protein sequence[J]. BioTechniques, 1998, 24(2):318-319.DOI: 10.2144/98242pf02.
[20]
SCHUELKE M. An economic method for the fluorescent labeling of PCR fragments[J]. Nat Biotechnol, 2000, 18(2):233-234.DOI: 10.1038/72708.
[21]
HOLLAND M M, PARSON W. GeneMarker© HID:a reliable software tool for the analysis of forensic STR data[J]. J Forensic Sci, 2011, 56(1):29-35.DOI: 10.1111/j.1556-4029.2010.01565.x.
[22]
PEAKALL R, SMOUSE P E. Genalex 6:genetic analysis in Excel.Population genetic software for teaching and research[J]. Mol Ecol Notes, 2006, 6(1):288-295.DOI: 10.1111/j.1471-8286.2005.01155.x.
[23]
APARICIO J M, ORTEGO J, CORDERO P J. What should we weigh to estimate heterozygosity,alleles or loci?[J]. Mol Ecol, 2006, 15(14):4659-4665.DOI: 10.1111/j.1365-294X.2006.03111.x.
[24]
兰进茂, 覃瑞, 夏婧. 华蟹甲的简化基因组测序及SSR引物开发[J]. 中南民族大学学报(自然科学版), 2021, 40(3):258-263.
LAN J M, QIN R, XIA J. Simplified genome SSR information and the development of SSR primers in Sinacalia tangutica (Asteraceae)[J]. J South Central Univ Natl (Nat Sci Ed), 2021, 40(3):258-263.DOI: 10.12130/znmdzk.20210307.
[25]
LV S Z, CHENG S, WANG Z Y, et al. Draft genome of the famous ornamental plant Paeonia suffruticosa[J]. Ecol Evol, 2020, 10(11):4518-4530.DOI: 10.1002/ece3.5965.
PDF(2132 KB)

Accesses

Citation

Detail

Sections
Recommended
The full text is translated into English by AI, aiming to facilitate reading and comprehension. The core content is subject to the explanation in Chinese.

/