Effects of extreme climate on the distribution and potential habitat of Hyphantria cunea in China

XUE Mingyu, HAO Dejun, ZHAO Xudong, GENG Yishu, HU Tianyi, XIE Chunxia

JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2024, Vol. 48 ›› Issue (5) : 197-203.

PDF(2626 KB)
PDF(2626 KB)
JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2024, Vol. 48 ›› Issue (5) : 197-203. DOI: 10.12302/j.issn.1000-2006.202212010

Effects of extreme climate on the distribution and potential habitat of Hyphantria cunea in China

Author information +
History +

Abstract

【Objective】This study aims to predict the potential habitat of Hyphantria cunea under extreme climate conditions in China. 【Method】The occurrence data of H. cunea were obtained. Contemporary and future bioclimatic variables and extreme climate index data were processed using ArcGIS and DIVA-GIS. Environmental variables with low correlation coefficients and high contribution rates were selected. These variables were input into MaxEnt to calculate the potential habitats of H. cunea for the contemporary period, 2021 to 2040, 2041 to 2060, and 2061 to 2080. The spatial changes in the habitats were expressed by the relative positions of the centroids of the habitats. 【Result】The maximum daily precipitation, warm spell duration index, percentage of nights when the minimum temperature is below the 10th percentile, and mean temperature of the wettest quarter were important variables affecting the distribution of H. cunea. The potential habitat of H. cunea was currently mainly distributed in eastern, northern, and northeastern China, as well as the middle and lower reaches of the Yangtze River. In the future, H. cunea might spread to southwest China, reaching Sichuan and Chongqing, with scattered distributions in Guangdong and Guangxi. 【Conclusion】The extreme precipitation is an important factor affecting the distribution of H. cunea. H. cunea is adapted to areas with stable climates. Predictions based on the extreme climate index indicate a risk that H. cunea will spread to southwest China in the future.

Key words

Hyphantria cunea / MaxEnt / potential habitat / extreme climate / spatial distribution / climate scenarios

Cite this article

Download Citations
XUE Mingyu , HAO Dejun , ZHAO Xudong , et al . Effects of extreme climate on the distribution and potential habitat of Hyphantria cunea in China[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2024, 48(5): 197-203 https://doi.org/10.12302/j.issn.1000-2006.202212010

References

[1]
XU Y, GAO X J, GIORGI F. Regional variability of climate change hot-spots in east Asia[J]. Adv Atmos Sci, 2009, 26(4):783-792.DOI: 10.1007/s00376-009-9034-2.
[2]
CHEN X L, ZHOU T J, WU P L, et al. Emergent constraints on future projections of the western North Pacific Subtropical High[J]. Nat Commun, 2020, 11(1):2802.DOI: 10.1038/s41467-020-16631-9.
[3]
李慧, 郝德君, 徐天, 等. 高温胁迫对植食性昆虫影响研究进展[J]. 南京林业大学学报(自然科学版), 2022, 46(6):215-224.
LI H, HAO D J, XU T, et al. The effects of heat stress on herbivorous insects:an overview and future directions[J]. J Nanjing For Univ (Nat Sci Ed), 2022, 46(6):215-224.DOI: 10.12302/j.issn.1000-2006.202209041.
[4]
贾志怡, 陈聪, 马宇萱, 等. 温度对香樟齿喙象生长发育的影响[J]. 南京林业大学学报(自然科学版), 2020, 44(4):131-136.
JIA Z Y, CHEN C, MA Y X, et al. Effects of temperature on growth and development of Pagiophloeus tsushimanus Morimoto[J]. J Nanjing For Univ (Nat Sci Ed), 2020, 44(4):131-136.DOI: 10.3969/j.issn.1000-2006.201904025.
[5]
FILAZZOLA A, MATTER S F, MACIVOR J S. The direct and indirect effects of extreme climate events on insects[J]. Sci Total Environ, 2021, 769:145161.DOI: 10.1016/j.scitotenv.2021.145161.
[6]
HILL G M, KAWAHARA A Y, DANIELS J C, et al. Climate change effects on animal ecology: butterflies and moths as a case study[J]. Biological Reviews, 2021, 96(5):2113-2126. DOI:10.1111/brv.12746.
[7]
KOCSIS M. Impacts of climate change on Lepidoptera species and communities[J]. Appl Ecol Env Res, 2011, 9(1):43-72.DOI: 10.15666/aeer/0901_043072.
[8]
赵旭东, 耿薏舒, 郝德君, 等. 美国白蛾防控技术的研究进展及展望[J]. 中国森林病虫, 2022, 41(5):44-52.
ZHAO X D, GENG Y S, HAO D J, et al. Research progress and prospect of the control technology of Hyphantria cunea[J]. For Pest Dis, 2022, 41(5):44-52.DOI: 10.19688/j.cnki.issn1671-0886.20220045.
[9]
孔雪华, 杨洛滨, 韩世德, 等. 高温对美国白蛾生长发育的影响研究[J]. 山东林业科技, 2009, 39(6):35-37.
KONG X H, YANG L B, HAN S D, et al. Study on the influence of high temperature on the growth and development of Hyphantria cunea[J]. J Shandong For Sci Technol, 2009, 39(6):35-37.DOI: 10.3969/j.issn.1002-2724.2009.06.010.
[10]
LI J L, CHEN J Y, CAI P. Research progress of occurrence and comprehensive control of fall webworm[Hyphantria cunea(Drury)][J]. Plant Dis Pests, 2013, 4(4):32-35,44.DOI: 10.19579/j.cnki.plant-d.p.2013.04.009.
[11]
ELITH J, LEATHWICK J R. Species distribution models:ecological explanation and prediction across space and time[J]. Annu Rev Ecol Evol Syst, 2009, 40:677-697.DOI: 10.1146/annurev.ecolsys.110308.120159.
[12]
PHILLIPS STEVEN J, MIROSLAV D. Modeling of species distributions with MaxEnt:new extensions and a comprehensive evaluation[J]. Ecography, 2008, 31(2):161-175.DOI: 10.1111/j.0906-7590.2008.5203.x
[13]
PAN S, SU X. Study on Geographic distribution of fall webworm based on maximum entropy model[J]. Nature Environment and Pollution Technology, 2017, 16(3):737-744. DOI:10.46488/NEPT.2017.v16i03.008.
[14]
纪烨琳, 苏喜友, 于治军. 基于随机森林模型的美国白蛾在中国的潜在生境预测[J]. 南京林业大学学报(自然科学版), 2019, 43(6):121-128.
JI Y L, SU X Y, YU Z J. Potential habitat prediction of Hyphantria cunea based on a random forest model in China[J]. J Nanjing For Univ (Nat Sci Ed), 2019, 43(6):121-128.DOI: 10.3969/j.issn.1000-2006.201808046.
[15]
国家林业和草原局公告(2021年第7号)(2021年美国白蛾疫区)[EB/OL].
NFGA. National Forestry and Grassland Administration Announcement [2021] No.7:The affected areas of Hyphantria. cunea in 2021 (2021-03-30) [2022-12-25] http://www.forestry.gov.cn/main/6206/20220407/094424748508406.html.
[16]
SWETS J A. Measuring the accuracy of diagnostic systems[J]. Science, 1988, 240(4857):1285-1293.DOI: 10.1126/science.3287615.
[17]
李淑清. 甜菜夜蛾的生长发育与温湿度的关系[J]. 华中农业大学学报, 2002, 21(4):352-355.
LI S Q. Effect of temperature and humidity on the development of Spodoptera exigua (Hübner)[J]. J Huazhong Agric, 2002, 21(4):352-355.DOI: 10.13300/j.cnki.hnlkxb.2002.04.012.
[18]
罗礼智, 程云霞, 唐继洪, 等. 温湿度是影响草地螟发生为害规律的关键因子[J]. 植物保护, 2016, 42(4):1-8.
LUO L Z, CHENG Y X, TANG J H, et al. Temperature and relative humidity are the key factors for population dynamics and outbreak of the beet webworm,Loxostege sticticalis[J]. Plant Prot, 2016, 42(4):1-8.DOI: 10.3969/j.issn.0529-1542.2016.04.001.
[19]
OLIVER A D. Studies on the biological control of the fall webworm,Hyphantria cunea,in Louisiana[J]. J Econ Entomol, 1964, 57(3):314-318.DOI: 10.1093/jee/57.3.314.
[20]
问锦曾, 王海鸿, 胡平, 等. 降雨对防治美国白蛾药效的影响[J]. 中国植保导刊, 2008, 28(3):41-43.
WEN J Z, WANG H H, HU P, et al. Effect of rainfall on the efficacy of controlling Hyphantria cunea[J]. China Plant Prot, 2008, 28(3):41-43.DOI: 10.3969/j.issn.1672-6820.2008.03.016.
[21]
ITÔ Y, SHIBAZAKI A, IWAHASHI O. Biology of Hyphantria cunea Drury (Lepidoptera:Arctiidae) in Japan.IX.population dynamics[J]. Popul Ecol, 1969, 11(2):211-228.DOI: 10.1007/bf02936268.
[22]
孔锋, 方建, 乔枫雪, 等. 透视中国小时极端降水强度和频次的时空变化特征[J]. 长江流域资源与环境, 2019, 28(12):3051-3067.
KONG F, FANG J, QIAO F X, et al. Temporal and spatial variation characteristics of intensity and frequency of hourly extreme precipitation in China from 1961 to 2013[J]. Resour Environ Yangtze Basin, 2019, 28(12):3051-3067.DOI: 10.11870/cjlyzyyhj201912024.
[23]
薛媛, 薛晓萍. 极端降水与干旱同步频发的研究进展[J]. 海洋气象学报, 2022, 42(1):61-73.
XUE Y, XUE X P. Research advances in simultaneous frequency of extreme precipitation and drought[J]. J Mar Meteorol, 2022, 42(1):61-73.DOI: 10.19513/j.cnki.issn2096-3599.2022.01.007.
[24]
卢珊, 胡泽勇, 王百朋, 等. 近56年中国极端降水事件的时空变化格局[J]. 高原气象, 2020, 39(4):683-693.
LU S, HU Z Y, WANG B P, et al. Spatio-temporal patterns of extreme precipitation events over China in recent 56 years[J]. Plateau Meteorol, 2020, 39(4):683-693.DOI: 10.7522/j.issn.1000-0534.2019.00058.
[25]
胡冬春, 徐富强, 刘旭, 等. 昆虫生长阻滞肽研究进展[J]. 江苏农业学报, 2023, 39(4):1072-1079.
HU D C, XU F Q, LIU X, et al. Research progress on insect growth-blocking peptide[J]. Jiangsu J Agr Sci, 2023, 39(4):1072-1079. DOI:10.3969/j.issn.1000-4440.2023.04.017.
[26]
叶江霞, 王敬文, 张明莎, 等. 基于空间矩阵模型及0-1测度的美国白蛾风险格局分析[J]. 林业科学, 2021, 57(1):140-152.
YE J X, WANG J W, ZHANG M S, et al. Risk pattern analysis of Hyphantria cunea based on spatial matrix model and 0-1 measure[J]. Sci Silvae Sin, 2021, 57(1):140-152.DOI: 10.11707/j.1001-7488.20210115.
[27]
董欣, 倪相. 西南地区不同海拔极端降水时空变化特征[J]. 西南大学学报(自然科学版), 2022, 44(9):110-121.
DONG X, NI X. Spatiotemporal variation of extreme precipitation at different elevations in southwest China[J]. J Southwest Univ (Nat Sci Ed), 2022, 44(9):110-121.DOI: 10.13718/j.cnki.xdzk.2022.09.012.
[28]
吉戴婧琪, 元媛, 韩剑桥. 中国极端降水事件的时空变化及趋势预测[J]. 中国农村水利水电, 2022(10):74-80.
JI D J Q, YUAN Y, HAN J Q. Spatial-temporal changes and trend predictions of extreme precipitation events in China[J]. China Rural Water Hydropower, 2022(10):74-80.DOI: 10.12396/znsd.220691.
[29]
李德斌, 卢修亮, 何姍, 等. 东北地区美国白蛾灾害扩散过程和趋势分析[J]. 中国森林病虫, 2023, 42(2):9-15.
LI D B, LU X L, HE S, et al. Disaster spread process and trend analysis of Hyphantria cunea in northeast China[J]. Forest Pest and Disease, 2023, 42(2):9-15. DOI:10.19688/j.cnki.issn1671-0886.20220069.
[30]
ZHU H H, JIANG Z H, LI L. Projection of climate extremes in China,an incremental exercise from CMIP5 to CMIP6[J]. Sci Bull, 2021, 66(24):2528-2537.DOI: 10.1016/j.scib.2021.07.026.
PDF(2626 KB)

Accesses

Citation

Detail

Sections
Recommended
The full text is translated into English by AI, aiming to facilitate reading and comprehension. The core content is subject to the explanation in Chinese.

/