JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2023, Vol. 47 ›› Issue (6): 251-262.doi: 10.12302/j.issn.1000-2006.202212021
Previous Articles Next Articles
SONG Qing1(), LI Chaoqun1, CHEN Junyu1,2,*()
Received:
2022-12-12
Revised:
2023-02-16
Online:
2023-11-30
Published:
2023-11-23
CLC Number:
SONG Qing, LI Chaoqun, CHEN Junyu. Spatio-temporal evolution and influencing factors of carbon emission efficiency in the Yangtze River Delta region at the city scale[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2023, 47(6): 251-262.
Table 1
Carbon emission efficiency of cities in the Yangtze River Delta region from 2010 to 2019"
城市 city | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 均值 mean | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1.上海Shanghai | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | |||||||
2.南京Nanjing | 0.30 | 0.42 | 0.48 | 0.44 | 0.45 | 0.49 | 0.53 | 0.89 | 0.72 | 0.93 | 0.57 | |||||||
3.无锡Wuxi | 0.72 | 0.71 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.94 | |||||||
4.徐州Xuzhou | 0.51 | 0.52 | 0.57 | 0.52 | 0.55 | 0.59 | 0.63 | 0.84 | 0.71 | 0.96 | 0.64 | |||||||
5.常州Changzhou | 1.00 | 0.49 | 0.63 | 0.63 | 0.63 | 0.60 | 0.61 | 0.80 | 0.77 | 0.80 | 0.70 | |||||||
6.苏州Suzhou | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.82 | 0.81 | 1.00 | 0.96 | |||||||
7.南通Nantong | 0.78 | 0.80 | 1.00 | 0.62 | 0.51 | 0.66 | 0.70 | 0.82 | 0.64 | 0.87 | 0.74 | |||||||
8.连云港Lianyungang | 0.49 | 0.52 | 0.57 | 0.56 | 0.44 | 0.55 | 0.60 | 0.62 | 0.47 | 0.64 | 0.55 | |||||||
9.淮安Huai’an | 0.39 | 0.41 | 0.44 | 0.42 | 0.42 | 0.45 | 0.47 | 0.68 | 0.55 | 0.81 | 0.50 | |||||||
10.盐城Yancheng | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.70 | 0.74 | 0.80 | 0.61 | 0.89 | 0.87 | |||||||
11.扬州Yangzhou | 0.83 | 0.83 | 0.75 | 0.58 | 0.59 | 0.63 | 0.65 | 1.00 | 0.74 | 1.00 | 0.76 | |||||||
12.镇江Zhenjiang | 0.59 | 0.58 | 0.63 | 1.00 | 0.83 | 0.85 | 0.90 | 1.00 | 1.00 | 1.00 | 0.84 | |||||||
13.泰州Taizhou | 1.00 | 1.00 | 0.91 | 0.59 | 0.60 | 0.64 | 0.67 | 0.68 | 0.54 | 0.71 | 0.73 | |||||||
14.宿迁Suqian | 0.76 | 0.66 | 0.61 | 0.48 | 0.51 | 0.54 | 0.58 | 0.69 | 0.56 | 0.67 | 0.61 | |||||||
15.杭州Hangzhou | 0.41 | 0.41 | 0.49 | 0.49 | 0.48 | 0.51 | 0.54 | 0.78 | 0.68 | 0.75 | 0.55 | |||||||
16.宁波Ningbo | 0.53 | 0.51 | 0.61 | 0.66 | 0.68 | 0.67 | 0.68 | 0.78 | 0.75 | 0.74 | 0.66 | |||||||
17.温州Wenzhou | 1.00 | 1.00 | 0.86 | 0.94 | 0.82 | 0.76 | 0.74 | 0.72 | 0.65 | 0.71 | 0.82 | |||||||
18.嘉兴Jiaxing | 0.49 | 0.51 | 0.56 | 0.60 | 0.61 | 0.62 | 0.63 | 0.53 | 0.52 | 0.53 | 0.56 | |||||||
19.湖州Huzhou | 0.47 | 0.49 | 0.54 | 0.54 | 0.55 | 0.56 | 0.57 | 0.57 | 0.55 | 0.54 | 0.54 | |||||||
20.绍兴Shaoxing | 0.68 | 0.71 | 0.85 | 0.49 | 0.49 | 0.50 | 0.50 | 0.64 | 0.59 | 0.63 | 0.61 | |||||||
21.金华Jinhua | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.71 | 0.63 | 0.67 | 0.90 | |||||||
22.衢州Quzhou | 0.46 | 0.44 | 0.49 | 0.54 | 0.53 | 0.54 | 0.54 | 0.57 | 0.56 | 0.54 | 0.52 | |||||||
23.舟山Zhoushan | 0.47 | 0.53 | 0.56 | 0.58 | 0.44 | 0.46 | 0.49 | 1.00 | 1.00 | 1.00 | 0.65 | |||||||
24.台州Taizhou | 0.64 | 0.62 | 0.70 | 0.71 | 0.71 | 0.73 | 0.77 | 0.76 | 0.69 | 0.75 | 0.71 | |||||||
25.丽水Lishui | 0.75 | 0.76 | 0.97 | 1.00 | 1.00 | 1.00 | 1.00 | 0.77 | 0.66 | 0.65 | 0.86 | |||||||
26.合肥Hefei | 0.45 | 0.43 | 0.44 | 0.45 | 0.45 | 0.46 | 0.45 | 0.61 | 0.41 | 0.62 | 0.48 | |||||||
27.芜湖Wuhu | 0.41 | 0.38 | 0.39 | 0.41 | 0.41 | 0.43 | 0.44 | 0.57 | 0.42 | 0.59 | 0.45 | |||||||
28.蚌埠Bengbu | 0.42 | 0.42 | 0.42 | 0.43 | 0.42 | 0.45 | 0.46 | 0.63 | 0.47 | 0.64 | 0.48 | |||||||
29.淮南Huainan | 0.29 | 0.30 | 0.38 | 0.38 | 0.37 | 0.37 | 0.39 | 0.52 | 0.42 | 0.47 | 0.39 | |||||||
30.马鞍山Ma’anshan | 0.42 | 0.39 | 0.47 | 0.51 | 0.50 | 0.50 | 0.51 | 0.60 | 0.51 | 0.57 | 0.50 | |||||||
31.淮北Huaibei | 0.30 | 0.33 | 0.40 | 0.36 | 0.37 | 0.40 | 0.41 | 0.54 | 0.41 | 0.51 | 0.40 | |||||||
32.铜陵Tongling | 0.34 | 0.34 | 0.41 | 0.41 | 0.42 | 0.39 | 0.39 | 0.51 | 0.42 | 0.42 | 0.41 | |||||||
33.安庆Anqing | 0.41 | 0.40 | 0.47 | 0.45 | 0.45 | 0.49 | 0.52 | 0.87 | 0.59 | 0.87 | 0.55 | |||||||
34.黄山Huangshan | 0.44 | 0.46 | 0.46 | 0.50 | 0.53 | 0.53 | 0.54 | 0.67 | 0.45 | 0.66 | 0.52 | |||||||
35.滁州Chuzhou | 0.51 | 0.63 | 0.57 | 0.62 | 0.63 | 0.66 | 0.69 | 0.50 | 0.40 | 0.43 | 0.56 | |||||||
36.阜阳Fuyang | 0.47 | 0.49 | 0.60 | 0.60 | 0.66 | 0.59 | 0.57 | 0.60 | 0.49 | 0.50 | 0.56 | |||||||
37.宿州Suzhou | 0.49 | 0.53 | 0.57 | 0.54 | 0.55 | 0.44 | 0.46 | 0.71 | 0.55 | 0.75 | 0.56 | |||||||
38.六安Lu’an | 0.52 | 0.39 | 0.47 | 0.45 | 0.86 | 0.40 | 0.44 | 0.51 | 0.36 | 0.43 | 0.48 | |||||||
39.亳州Bozhou | 0.79 | 0.70 | 0.76 | 0.72 | 0.70 | 0.71 | 0.76 | 0.74 | 0.54 | 0.71 | 0.71 | |||||||
40.池州Chizhou | 0.42 | 0.39 | 0.40 | 0.39 | 0.39 | 0.52 | 0.56 | 0.48 | 0.40 | 0.44 | 0.44 | |||||||
41.宣城Xuancheng | 0.68 | 0.41 | 0.40 | 0.42 | 0.63 | 0.65 | 0.67 | 0.50 | 0.38 | 0.43 | 0.52 |
Table 2
Spatial distribution of carbon emission efficiency in the Yangtze River Delta region from 2010 to 2019"
年份year | 区间interval | 城市city |
---|---|---|
2010 | 低碳排放效率区 | 淮北、淮安、蚌埠、淮南、南京、马鞍山、杭州、芜湖、铜陵、安庆、池州 |
中低碳排放效率区 | 连云港、徐州、宿州、阜阳、六安、合肥、滁州、镇江、黄山、湖州、嘉兴、衢州、宁波、舟山 | |
中高碳排放效率区 | 亳州、宿迁、扬州、南通、无锡、宣城、绍兴、台州、丽水 | |
高碳排放效率区 | 苏州、上海、盐城、泰州、常州、金华、温州 | |
2013 | 低碳排放效率区 | 淮北、淮安、蚌埠、淮南、六安、合肥、南京、芜湖、铜陵、安庆、池州、宣城 |
中低碳排放效率区 | 连云港、徐州、宿州、宿迁、马鞍山、湖州、黄山、杭州、绍兴、衢州 | |
中高碳排放效率区 | 亳州、阜阳、滁州、扬州、泰州、南通、常州、嘉兴、宁波、台州、舟山 | |
高碳排放效率区 | 盐城、镇江、苏州、无锡、上海、金华、丽水、温州 | |
2016 | 低碳排放效率区 | 宿州、淮北、蚌埠、淮安、淮南、六安、舟山、合肥、芜湖、铜陵 |
中低碳排放效率区 | 连云港、宿迁、阜阳、南京、马鞍山、常州、安庆、池州、黄山、湖州、杭州、衢州、绍兴 | |
中高碳排放效率区 | 徐州、亳州、滁州、扬州、泰州、盐城、南通、宣城、嘉兴、宁波、台州、温州 | |
高碳排放效率区 | 镇江、无锡、苏州、上海、金华、丽水 | |
2019 | 低碳排放效率区 | 淮北、阜阳、淮南、滁州、六安、池州、铜陵、宣城、湖州、嘉兴、衢州 |
中低碳排放效率区 | 连云港、宿迁、蚌埠、合肥、马鞍山、芜湖、黄山、绍兴、金华、丽水 | |
中高碳排放效率区 | 亳州、宿州、淮安、泰州、常州、杭州、宁波、台州、温州 | |
高碳排放效率区 | 徐州、安庆、舟山、盐城、扬州、南京、镇江、南通、上海、无锡、苏州 |
Table 3
Global Moran index statistics of carbon emission efficiency in the Yangtze River Delta region"
年份 year | 莫兰指数 Moran’s I | Z检验值 Z-test value | P |
---|---|---|---|
2010 | 0.289 | 3.098 | 0.002 |
2011 | 0.402 | 4.236 | <0.001 |
2012 | 0.499 | 5.175 | <0.001 |
2013 | 0.284 | 3.068 | 0.002 |
2014 | 0.153 | 1.770 | 0.077 |
2015 | 0.326 | 3.514 | <0.001 |
2016 | 0.307 | 3.314 | 0.001 |
2017 | 0.179 | 2.017 | 0.044 |
2018 | 0.357 | 3.828 | <0.001 |
2019 | 0.232 | 2.533 | 0.011 |
Fig. 3
Carbon emission efficiency trend analysis from 2010 to 2019 The height of the vertical line indicates the value of carbon emission efficiency, the black dots indicate the projection of the vertical line in the east-west and north-south directions, and the intersection of each vertical line and the XY plane indicates the geographical location of cities in the Yangtze River Delta."
Table 4
Regression and decomposition results of spatial Dubin model(SDM) (bidirectional fixed effect)"
变量 variables | 直接解释 direct explanatory | 空间滞后解释 spatial lag explanatory | 直接效应 direct effects | 间接效应 indirect effects | |||||
---|---|---|---|---|---|---|---|---|---|
R2 | Z | R2 | Z | R2 | Z | R2 | Z | ||
人均GDP lnG | -1.770*** | -5.02 | 2.353*** | 4.98 | -1.737*** | -4.83 | 2.359*** | 4.95 | |
人口规模lnPs | 0.210 | 0.22 | 0.288 | 1.04 | 0.019 | 0.21 | 0.285 | 1.01 | |
产业结构Is | -0.872*** | -3.12 | 0.488 | 0.84 | -0.841*** | -3.15 | 0.521 | 0.90 | |
能源消费结构S | -0.203 | -1.53 | -0.429 | -1.41 | -0.210 | -1.63 | -0.436 | -1.37 | |
R&D经费支出lnRD | -0.007 | -0.55 | -0.065** | -2.07 | -0.008 | -0.62 | -0.068** | -2.07 | |
外商直接投资lnF | 0.059** | 2.19 | -0.046 | -0.99 | 0.059** | 2.29 | -0.043 | -0.87 |
[1] | International Energy Agency (IEA). CO2 emissions from fuel combustion 2017[M]. Paris: OECD Publishing, 2017. |
[2] | LIU F, TANG L, LIAO K C, et al. Spatial distribution and regional difference of carbon emissions efficiency of industrial energy in China[J]. Sci Rep, 2021, 11(1):19419.DOI:10.1038/s41598-021-98225-z. |
[3] | 魏楚. 中国城市CO2边际减排成本及其影响因素[J]. 世界经济, 2014, 37(7):115-141. |
WEI C. Marginal cost of CO2 emission reduction in China and its influencing factors[J]. J World Econ, 2014, 37(7):115-141.DOI:10.19985/j.cnki.cassjwe.2014.07.007. | |
[4] | 冯冬, 李健. 京津冀区域城市二氧化碳排放效率及减排潜力研究[J]. 资源科学, 2017, 39(5):978-986. |
FENG D, LI J. Research of the carbon dioxide emission efficiency and reduction potential of cities in the Beijing-Tianjin-Hebei region[J]. Resour Sci, 2017, 39(5):978-986.DOI:10.18402/resci.2017.05.17. | |
[5] | ZHOU D Q, MENG F Y, BAI Y, et al. Energy efficiency and congestion assessment with energy mix effect: the case of APEC countries[J]. J Clean Prod, 2017, 142:819-828.DOI:10.1016/j.jclepro.2016.08.166. |
[6] | FENG C, ZHANG H, HUANG J B. The approach to realizing the potential of emissions reduction in China: an implication from data envelopment analysis[J]. Renew Sustain Energy Rev, 2017, 71:859-872.DOI:10.1016/j.rser.2016.12.114. |
[7] | PAN C M, MING D K. The analysis of carbon emission efficiency and affecting factors in China[J]. Environmental and Resource Economics Review, 2017, 26(2):205-227. |
[8] | 李慧, 李玮, 姚西龙. 中国省域全要素碳排放效率空间特征与动态收敛性研究[J]. 科技管理研究, 2019, 39(19):98-103. |
LI H, LI W, YAO X L. Spatial characteristics and dynamic convergence research on provincial total factor carbon emissions efficiency in China[J]. Sci Technol Manag Res, 2019, 39(19):98-103.DOI:10.3969/j.issn.1000-7695.2019.19.013. | |
[9] | 陈晓红, 易国栋, 刘翔. 基于三阶段SBM-DEA模型的中国区域碳排放效率研究[J]. 运筹与管理, 2017, 26(3):115-122. |
CHEN X H, YI G D, LIU X. Analysis of the low carbon economy efficiency in China: based on a method of three- stage SBM-DEA model with undesirable outputs[J]. Oper Res Manag Sci, 2017, 26(3):115-122.DOI:10.12005/orms.2017.0065. | |
[10] | 关伟, 王舒, 许淑婷. 出口贸易碳排放效率时空特征与影响因素:以中国沿海省份为例[J]. 生态经济, 2019, 35(1):30-36. |
GUAN W, WANG S, XU S T. Spatial-temporal characteristics and affecting factors of export trade carbon emission: a case study in the coastal provinces of China[J]. Ecol Econ, 2019, 35(1):30-36. | |
[11] | 郗永勤, 吉星. 我国工业行业碳排放效率实证研究:考虑非期望产出SBM超效率模型与DEA视窗方法的应用[J]. 科技管理研究, 2019, 39(17):53-62. |
XI Y Q, JI X. An empirical study on carbon emission efficiency of industrial industry in China: considering the super efficiency model of unexpected output SBM and the application of DEA window method[J]. Sci Technol Manag Res, 2019, 39(17):53-62.DOI:10.3969/j.issn.1000-7695.2019.17.008. | |
[12] | 邵海琴, 王兆峰. 长江经济带旅游业碳排放效率的综合测度与时空分异[J]. 长江流域资源与环境, 2020, 29(8):1685-1693. |
SHAO H Q, WANG Z F. Comprehensive measurement of carbon emissions efficiency of tourism and its spatio-temporal differentiation in the Yangtze River Economic Belt[J]. Resour Environ Yangtze Basin, 2020, 29(8):1685-1693.DOI:10.11870/cjlyzyyhj202008001. | |
[13] | 王诚, 王晓娟. 长江经济带碳排放效率:测度与分析[J]. 统计与决策, 2022, 38(17):82-85. |
WANG C, WANG X J. Carbon emission efficiency in Yangtze River Economic Belt: measurement and analysis[J]. Stat Decis, 2022, 38(17):82-85.DOI:10.13546/j.cnki.tjyjc.2022.17.016. | |
[14] | 蒋培培, 王远, 罗进, 等. 长江与黄河流域碳排放效率时空演变特征及路径识别探究[J]. 环境科学研究, 2022, 35(7):1743-1751. |
JIANG P P, WANG Y, LUO J, et al. Comparative study of spatial-temporal evolution and growth path of carbon emissions efficiency in Yangtze River basin and Yellow River basin[J]. Res Environ Sci, 2022, 35(7):1743-1751.DOI:10.13198/j.issn.1001-6929.2022.04.06. | |
[15] | 岳立, 雷燕燕, 王杰. 中国省域旅游业碳排放效率时空特征及影响因素分析[J]. 统计与决策, 2020, 36(16):69-73. |
YUE L, LEI Y Y, WANG J. Spatial-temporal characteristics and influencing factors of carbon emission efficiency of tourism in China province[J]. Stat Decis, 2020, 36(16):69-73.DOI:10.13546/j.cnki.tjyjc.2020.16.015. | |
[16] | 袁长伟, 张帅, 焦萍, 等. 中国省域交通运输全要素碳排放效率时空变化及影响因素研究[J]. 资源科学, 2017, 39(4):687-697. |
YUAN C W, ZHANG S, JIAO P, et al. Temporal and spatial variation and influencing factors research on total factor efficiency for transportation carbon emissions in China[J]. Resour Sci, 2017, 39(4):687-697.DOI:10.18402/resci.2017.04.10. | |
[17] | 李健, 马晓芳, 苑清敏. 区域碳排放效率评价及影响因素分析[J]. 环境科学学报, 2019, 39(12):4293-4300. |
LI J, MA X F, YUAN Q M. Evaluation and influencing factors’ analysis of regional carbon emission efficiency[J]. Acta Sci Circumstantiae, 2019, 39 (12):4293-4300.DOI:10.13671/j.hjkxxb.2019.0309. | |
[18] | 蔺雪芹, 边宇, 王岱. 京津冀地区工业碳排放效率时空演化特征及影响因素[J]. 经济地理, 2021, 41(6):187-195. |
LIN X Q, BIAN Y, WANG D. Spatiotemporal evolution characteristics and influencing factors of industrial carbon emission efficiency in Beijing-Tianjin-Hebei region[J]. Econ Geogr, 2021, 41(6):187-195.DOI:10.15957/j.cnki.jjdl.2021.06.021. | |
[19] | 徐英启, 程钰, 王晶晶, 等. 中国低碳试点城市碳排放效率时空演变与影响因素[J]. 自然资源学报, 2022, 37(5):1261-1276. |
XU Y Q, CHENG Y, WANG J J, et al. Spatio-temporal evolution and influencing factors of carbon emission efficiency in low carbon city of China[J]. J Nat Resour, 2022, 37(5):1261-1276.DOI:10.31497/zrzyxb.20220511. | |
[20] | 李建豹, 黄贤金, 揣小伟, 等. 长三角地区碳排放效率时空特征及影响因素分析[J]. 长江流域资源与环境, 2020, 29(7):1486-1496. |
LI J B, HUANG X J, CHUAI X W, et al. Spatio-temporal characteristics and influencing factors of carbon emissions efficiency in the Yangtze River Delta region[J]. Resour Environ Yangtze Basin, 2020, 29(7):1486-1496.DOI:10.11870/cjlyzyyhj202007002. | |
[21] | 中共中央国务院. 中共中央国务院印发《长江三角洲区域一体化发展规划纲要》[EB/OL].(2019-12-01)[2022-12-28]. https://www.gov.cn/gongbao/content/2019/content_5462503.htm. |
[22] | 吴建新, 郭智勇. 基于连续性动态分布方法的中国碳排放收敛分析[J]. 统计研究, 2016, 33(1):54-60. |
WU J X, GUO Z Y. Research on the convergence of carbon dioxide emissions in China: a continuous dynamic distribution approach[J]. Stat Res, 2016, 33(1):54-60.DOI:10.19343/j.cnki.11-1302/c.2016.01.008. | |
[23] | TONE K. A slacks-based measure of efficiency in data envelopment analysis[J]. Eur J Oper Res, 2001, 130(3):498-509.DOI: 10.1016/s0377-2217(99)00407-5. |
[24] | 郭文慧, 吴佩林, 王玎. 山东省碳排放效率与影响因素分析:基于非期望产出的SBM模型的实证研究[J]. 东岳论丛, 2013, 34(5):172-176. |
GUO W H, WU P L, WANG D. Analysis of carbon emission efficiency and influencing factors in Shandong Province:an empirical study based on SBM model of unexpected output[J]. Dongyue Tribune, 2013, 34(5):172-176.DOI: 10.15981/j.cnki.dongyueluncong.2013.05.001. | |
[25] | 郭炳南, 林基. 基于非期望产出SBM模型的长三角地区碳排放效率评价研究[J]. 工业技术经济, 2017, 36(1):108-115. |
GUO B N, LIN J. Research on efficiency of carbon emissions in Yangtze River Delta based on the SBM-undesirable model[J]. Ind Technol Econ, 2017, 36(1):108-115.DOI:10.3969/j.issn.1004-910X.2017.01.014. | |
[26] | 张军, 吴桂英, 张吉鹏. 中国省际物质资本存量估算:1952—2000[J]. 经济研究, 2004, 39(10):35-44. |
ZHANG J, WU G Y, ZHANG J P. The estimation of China’s provincial capital stock:1952—2000[J]. Econ Res J, 2004, 39(10):35-44. | |
[27] | GETIS A, ORD J K. The analysis of spatial association by use of distance statistics[J]. Geogr Anal, 2010, 24(3):189-206.DOI: 10.1111/j.1538-4632.1992.tb00261.x. |
[28] | EHRLICH P, HOLDEN J. One-dimensional economy[J]. Bulletin of the Atomic Scientists, 1972, 28:16-27. |
[29] | GROSSMAN G M, KRUEGER A B. Environmental impacts of a north American free trade agreement[R]. Cambridge: National Bureau of Economic Research, 1991. |
[30] | 宁论辰, 郑雯, 曾良恩. 2007—2016年中国省域碳排放效率评价及影响因素分析:基于超效率SBM-Tobit模型的两阶段分析[J]. 北京大学学报(自然科学版), 2021, 57(1):181-188. |
NING L C, ZHENG W, ZENG L E. Research on China’s carbon dioxide emissions efficiency from 2007 to 2016:based on two stage super efficiency SBM model and Tobit model[J]. Acta Sci Nat Univ Pekin, 2021, 57(1):181-188.DOI:10.13209/j.0479-8023.2020.111. | |
[31] | 柳涛. 黄河流域城市碳排放效率测度及影响因素分析[J]. 产业创新研究, 2022(17):45-47. |
LIU T. Measurement of urban carbon emission efficiency in the Yellow River basin and analysis of its influencing factors[J]. Ind Innov, 2022(17):45-47. | |
[32] | 宋杰鲲, 梁璐璐, 牛丹平, 等. 山东省地市碳排放效率测度、影响因素与提升对策[J]. 中国石油大学学报(社会科学版), 2018, 34(1):15-21. |
SONG J K, LIANG L L, NIU D P, et al. Evaluation,influencing factors and promotion countermeasures of cities’ carbon emissions efficiencies in Shandong Province[J]. J China Univ Petrol (Ed Soc Sci), 2018, 34(1):15-21.DOI:10.13216/j.cnki.upcjess.2018.01.0003. | |
[33] | 孙焱林, 何莲, 温湖炜. 异质性视角下中国省域碳排放效率及其影响因素研究[J]. 工业技术经济, 2016, 35(4):117-123. |
SUN Y L, HE L, WEN H W. Research on inter-provincial carbon emissions efficiency and its determinants in China based on provincial heterogeneity perspective[J]. J Ind Technol Econ, 2016, 35(4):117-123.DOI:10.3969/j.issn.1004-910X.2016.04.015. | |
[34] | 尹妮妮, 王川川, 闫鹏程. “一带一路”省域碳排放效率及驱动因素研究[J]. 煤炭工程, 2022, 54(9):182-186. |
YIN N N, WANG C C, YAN P C. Provincial carbon emission efficiency and driving factors along “the Belt and Road” in China under carbon peak and carbon neutrality[J]. Coal Eng, 2022, 54(9):182-186.DOI:10.11799/ce202209032. | |
[35] | 平智毅, 吴学兵, 吴雪莲. 长江经济带碳排放效率的时空差异及其影响因素分析[J]. 生态经济, 2020, 36(3):31-37. |
PING Z Y, WU X B, WU X L. Spatial-temporal differences and its influencing factors of carbon emission efficiency in the Yangtze River Economic Belt[J]. Ecol Econ, 2020, 36(3):31-37. | |
[36] | ANSELIN L, FLORAX R, REY S J. Advances in spatial econometrics:methodology,tools and applications[M]. Berlin:Springer, 2004. |
[37] | LESAGE J P, PACE R K. Introduction to spatial econometrics[M]. Boca Raton: CRC Press, 2009. |
[1] | YUE Qingru, ZHANG Zhiguang. Dynamic simulation of multi-agent benefit distributions in the forest paper green supply chain with back-feeding mechanisms [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2023, 47(3): 217-224. |
[2] | LYU Guoping, LIAO Chengrui, XU Yannan, ZHANG Ting, LI Haidong. Dynamic simulation of future ecosystem service value in Puding County, Guizhou Province based on CA-Markov model [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2017, 41(05): 49-56. |
[3] | CAI Zhi-jian, ZHANG Wei-wei. Contingent Valuation of Yangtze River’s Water Quality Improvement Structured by Payment Card Questionnaires [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2006, 30(06): 27-31. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||