Community assembly mechanism for different planting ages of Chinese fir artificial forests in subtropical China

LU Xudong, DONG Yuran, LI Yao, MAO Lingfeng

JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2024, Vol. 48 ›› Issue (1) : 67-73.

PDF(2727 KB)
PDF(2727 KB)
JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2024, Vol. 48 ›› Issue (1) : 67-73. DOI: 10.12302/j.issn.1000-2006.202212037

Community assembly mechanism for different planting ages of Chinese fir artificial forests in subtropical China

Author information +
History +

Abstract

【Objective】 The process of community establishment in Chinese fir (Cunninghamia lanceolata) artificial forest, as one of the most significant ecosystems and sources of timber in China’s subtropical regions, is crucial for understanding the coexistence of species and the maintenance of biodiversity in plantation forests. The objective of this study is to investigate the process of community assembly and underlying mechanisms of Chinese fir artificial forests in Chinese subtropical, and provide a theoretical basis for enhancing the stability of local biodiversity in the management of Chinese fir artificial forests. 【Method】 Data from 143 pure Chinese fir artificial forests with a wide age range (3-100 years old) in subtropical China were collected through literature search and field sampling surveys. The changes in community phylogenetic structure with forest age and breast height diameter were examined to explore the variations in environmental filtration, competitive exclusion, and stochastic processes during stand development. 【Result】 Overall, as the forest age increased, the net relatedness index (NRI) and net taxon index (NTI) of plant communities in Chinese fir artificial forests initially decreased and then leveled off. The phylogenetic structure transitioned from aggregation to stochastic processes and eventually tended to diverge. The changes in NRI were more significant than those in NTI. In the early stage of young stands, NRI and NTI were both higher than 0, indicating aggregation in the phylogenetic structure. Before stand maturity, NRI was lower than 0, and NTI was higher than 0, showing divergence at the community level and aggregation at the end of the evolutionary tree. After stand maturity, both NRI and NTI were lower than 0, indicating a divergent phylogenetic structure. The trend of phylogenetic structure with diameter at breast height (DBH) was consistent with stand age. 【Conclusion】 The community assembly of Chinese fir artificial forests is primarily driven by environmental filtration, followed by a period of stochastic processes, and ultimately dominated by inter-biotic interactions as the forest stand grows and develops. Implementing appropriate forest management measures for different stand ages is beneficial for the coexistence of local species and the maintenance of plant diversity in Chinese fir artificial forests.

Key words

Chinese fir (Cunninghamia lanceolata) artificial forest / planting age / phylogeny / community assembly mechanism / subtropical region / biodiversity

Cite this article

Download Citations
LU Xudong , DONG Yuran , LI Yao , et al. Community assembly mechanism for different planting ages of Chinese fir artificial forests in subtropical China[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2024, 48(1): 67-73 https://doi.org/10.12302/j.issn.1000-2006.202212037

References

[1]
盛炜彤. 关于我国人工林长期生产力的保持[J]. 林业科学研究, 2018, 31(1):1-14.
SHENG W T. On the maintenance of long-term productivity of plantation in China[J]. For Res, 2018, 31(1):1-14. DOI:10.13275/j.cnki.lykxyj.2018.01.001.
[2]
杨慧芳. 杉木的特征特性及良种造林技术[J]. 现代农业科技, 2022(5):97-98,101.
YANG H F. Characteristics of Cunninghamia lanceolata and afforestation techniques of improved varieties[J]. Modern Agriculture Science and Technology, 2022(5):97-98, 101. DOI:10.3969/j.issn.1007-5739.2022.05.032.
[3]
MEINERS S, CADOTTE M, FRIDLEY J, et al. Is successional research nearing its climax? New approaches for understanding dynamic communities[J]. Funct Ecol, 2015, 29:154-164. DOI:10.1111/1365-2435.12391.
[4]
张春雨, 赵秀海, 赵亚洲. 长白山温带森林不同演替阶段群落结构特征[J]. 植物生态学报, 2009, 33(6):1090-1100.
ZHANG C Y, ZHAO X H, ZHAO Y Z. Community structure in different successional stages in north temperate forests of Changbai Mountains,China[J]. Chin J Plant Ecol, 2009, 33(6):1090-1100. DOI:10.3773/j.issn.1005-264x.2009.06.009.
[5]
WEBB C O, ACKERLY D D, MCPEEK M A, et al. Phylogenies and community ecology[J]. Annu Rev Ecol Syst, 2002, 33:475-505. DOI:10.1146/annurev.ecolsys.33.010802.150448.
[6]
WEBB C O. Exploring the phylogenetic structure of ecological communities: an example for rain forest trees[J]. Am Nat, 2000, 156(2):145-155. DOI:10.1086/303378.
[7]
BRUELHEIDE H, BÖHNKE M, BOTH S, et al. Community assembly during secondary forest succession in a Chinese subtropical forest[J]. Ecol Monogr, 2011, 81(1):25-41. DOI:10.1890/09-2172.1.
[8]
SWENSON N G, STEGEN J C, DAVIES S J, et al. Temporal turnover in the composition of tropical tree communities: functional determinism and phylogenetic stochasticity[J]. Ecology, 2012, 93(3):490-499. DOI:10.1890/11-1180.1.
[9]
HELSEN K, HERMY M, HONNAY O. Trait but not species convergence during plant community assembly in restored semi-natural grasslands[J]. Oikos, 2012, 121(12):2121-2130. DOI:10.1111/j.1600-0706.2012.20499.x.
[10]
LEBRIJA-TREJOS E, PÉREZ-GARCÍA E A, MEAVE J A, et al. Functional traits and environmental filtering drive community assembly in a species-rich tropical system[J]. Ecology, 2010, 91(2):386-398. DOI:10.1890/08-1449.1.
[11]
ZHANG H, GILBERT B, ZHANG X X, et al. Community assembly along a successional gradient in sub-alpine meadows of the Qinghai-Tibetan Plateau, China[J]. Oikos, 2013, 122(6):952-960. DOI:10.1111/j.1600-0706.2012.20828.x.
[12]
BHASKAR R, DAWSON T, BALVANERA P. Community assembly and functional diversity along succession post-management[J]. Funct Ecol, 2014, 28:1256-1265. DOI:10.1111/1365-2435.12257.
[13]
PURSCHKE O, SCHMID B C, SYKES M T, et al. Contrasting changes in taxonomic, phylogenetic and functional diversity during a long-term succession: insights into assembly processes[J]. J Ecol, 2013, 101(4):857-866. DOI:10.1111/1365-2745.12098
[14]
LETCHER S G, CHAZDON R L, ANDRADE A C S, et al. Phylogenetic community structure during succession: evidence from three Neotropical forest sites[J]. Perspect Plant Ecol Evol Syst, 2012, 14(2):79-87. DOI:10.1016/j.ppees.2011.09.005.
[15]
WHITFELD T J S, KRESS W J, ERICKSON D L, et al. Change in community phylogenetic structure during tropical forest succession: evidence from New Guinea[J]. Ecography, 2012, 35(9):821-830. DOI:10.1111/j.1600-0587.2011.07181.x.
[16]
VERDÚ M, REY P J, ALCÁNTARA J M, et al. Phylogenetic signatures of facilitation and competition in successional communities[J]. J Ecol, 2009, 97(6):1171-1180. DOI:10.1111/j.1365-2745.2009.01565.x.
[17]
HOLL K D. Factors limiting tropical rain forest regeneration in abandoned pasture: seed rain, seed germination, microclimate, and soil[J]. Biotropica, 1999, 31(2):229-242. DOI:10.1111/j.1744-7429.1999.tb00135.x.
[18]
CHAZDON R L. Chance and determinism in tropical forest succession[J]. Trop for Community Ecol, 2008:384-409.
[19]
CHAZDON R L, CAREAGA S, WEBB C, et al. Community and phylogenetic structure of reproductive traits of woody species in wet tropical forests[J]. Ecol Monogr, 2003, 73(3):331-348. DOI:10.1890/02-4037.
[20]
ZHANG J L. Plantlist: looking up the status of plant scientific names based on the plant list database[Z]. R Package Version 0.3.0,2017. [2022-12-01]. https://github. com/helixcn/plantlist.
[21]
JIN Y, QIAN H. V. PhyloMaker: an R package that can generate very large phylogenies for vascular plants[J]. Ecography, 2019, 42(8):1353-1359. DOI:10.1111/ecog.04434.
[22]
SMITH S A, BROWN J W. Constructing a broadly inclusive seed plant phylogeny[J]. Am J Bot, 2018, 105(3):302-314. DOI:10.1002/ajb2.1019.
[23]
PARADIS E, SCHLIEP K. Ape 5.0: an environment formodern phylogenetics and evolutionary analyses in R[J]. Bioinf, 2019, 35(3):526-528. DOI:10.1093/bioinformatics/bty633.
[24]
CAVENDER-BARES J, KOZAK K H, FINE P V A, et al. The merging of community ecology and phylogenetic biology[J]. Ecol Lett, 2009, 12(7):693-715. DOI:10.1111/j.1461-0248.2009.01314.x.
[25]
PRINZING A, DURKA W, KLOTZ S, et al. The niche of higher plants: evidence for phylogenetic conservatism[J]. Proc R Soc Lond B, 2001, 268(1483):2383-2389. DOI:10.1098/rspb.2001.1801.
[26]
FINEGAN B. Pattern and process in neotropical secondary rain forests: the first 100 years of succession[J]. Trends Ecol Evol, 1996, 11(3):119-124. DOI:10.1016/0169-5347(96)81090-1.
[27]
CHAZDON R L. Tropical forest recovery: legacies of human impact and natural disturbances[J]. Perspect Plant Ecol Evol Syst, 2003, 6(1/2):51-71. DOI:10.1078/1433-8319-00042.
[28]
YU Q S, RAO X Q, OUYANG S N, et al. Changes in taxonomic and phylogenetic dissimilarity among four subtropical forest communities during 30 years of restoration[J]. For Ecol Manag, 2019, 432:983-990. DOI:10.1016/j.foreco.2018.10.033.
[29]
王少鹏, 罗明宇, 冯彦皓, 等. 生物多样性理论最新进展[J]. 生物多样性, 2022, 30(10): 21-33.
WANG S P, LUO M Y, FENG Y H, et al. Theoretical advances in biodiversity research[J]. Biodivers Sci, 2022, 30(10): 21-33. DOI:10.17520/biods.2022410.
[30]
TILMAN D, KAREIVA P M. Spatial ecology: the role of space in population dynamics and interspecific interactions[M]. Princeton N J: Princeton University Press,1997.
[31]
EMERSON B C, GILLESPIE R G. Phylogenetic analysis of community assembly and structure over space and time[J]. Trends Ecol Evol, 2008, 23(11):619-630. DOI:10.1016/j.tree.2008.07.005.
PDF(2727 KB)

Accesses

Citation

Detail

Sections
Recommended
The full text is translated into English by AI, aiming to facilitate reading and comprehension. The core content is subject to the explanation in Chinese.

/