JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2024, Vol. 48 ›› Issue (6): 166-174.doi: 10.12302/j.issn.1000-2006.202301018
Previous Articles Next Articles
YAN Yu(), LI Qiujie*(), LI Weizheng
Received:
2023-01-15
Revised:
2023-04-18
Online:
2024-11-30
Published:
2024-12-10
Contact:
LI Qiujie
E-mail:1356324910@qq.com;liqiujie_1@163.com
CLC Number:
YAN Yu, LI Qiujie, LI Weizheng. A single tree segmentation method for street trees facing side-looking MLS point clouds[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2024, 48(6): 166-174.
[1] | 金小军, 张军, 杨凡, 等. 城市行道树生长健康状况与种植形式的相关性分析[J]. 城市建筑, 2021, 18(34):188-192. |
JIN X J, ZHANG J, YANG F, et al. Correlation analysis between the growth and health of urban street trees and their planting forms[J]. Urban Archit, 2021, 18(34):188-192.DOI: 10.19892/j.cnki.csjz.2021.34.42. | |
[2] | MORADPOUR M, AFSHIN H, FARHANIEH B. A numerical investigation of reactive air pollutant dispersion in urban street canyons with tree planting[J]. Atmos Pollut Res, 2017, 8(2):253-266.DOI: 10.1016/j.apr.2016.09.002. |
[3] | 商艳上, 苏田, 李臻, 等. 园林行道树复壮技术[J]. 现代农业科技, 2021(12):176-177. |
SHANG Y S, SU T, LI Z, et al. Rejuvenation technology of garden street trees[J]. Mod Agric Sci Technol, 2021(12):176-177.DOI: 10.3969/j.issn.1007-5739.2021.12.071. | |
[4] | 许秋颖. 城市行道树种植存在的问题及其养护管理措施[J]. 现代园艺, 2019(22):180-181. |
XU Q Y. Problems existing in urban street tree planting and its maintenance and management measures[J]. Xiandai Hortic, 2019(22):180-181.DOI: 10.14051/j.cnki.xdyy.2019.22.116. | |
[5] | 刘智能, 张红锋, 徐瑾. 西藏行道树资源调查与结构特征分析[J]. 四川大学学报(自然科学版), 2019, 56(1):173-181. |
LIU Z N, ZHANG H F, XU J. Survey and structural characteristics analysis of street trees in Tibet[J]. J Sichuan Univ (Nat Sci Ed), 2019, 56(1):173-181.DOI: 10.3969/j.issn.0490-6756.2019.01.030. | |
[6] | ROSELL J R, SANZ R. A review of methods and applications of the geometric characterization of tree crops in agricultural activities[J]. Comput Electron Agric, 2012, 81:124-141.DOI: 10.1016/j.compag.2011.09.007. |
[7] | 郝红科. 基于机载激光雷达的森林参数反演研究[D]. 杨凌: 西北农林科技大学, 2019. |
HAO H K. Inversion of forest parameters using airborne LiDAR[D]. Yangling: Northwest A & F University, 2019.DOI: 10.27409/d.cnki.gxbnu.2019.000118. | |
[8] | ZHEN Z, QUACKENBUSH L, ZHANG L J. Trends in automatic individual tree crown detection and delineation: evolution of LiDAR data[J]. Remote Sens, 2016, 8(4):333.DOI: 10.3390/rs8040333. |
[9] | MARSELIS S M, ABERNETHY K, ALONSO A, et al. Evaluating the potential of full-waveform lidar for mapping pan-tropical tree species richness[J]. Global Ecol Biogeogr, 2020, 29(10):1799-1816.DOI: 10.1111/geb.13158. |
[10] | JASKIERNIAK D, LUCIEER A, KUCZERA G, et al. Individual tree detection and crown delineation from unmanned aircraft system (UAS) LiDAR in structurally complex mixed species eucalypt forests[J]. ISPRS J Photogramm Remote Sens, 2021, 171:171-187.DOI: 10.1016/j.isprsjprs.2020.10.016. |
[11] | SAFAIE A H, RASTIVEIS H, SHAMS A, et al. Automated street tree inventory using mobile LiDAR point clouds based on hough transform and active contours[J]. ISPRS J Photogramm Remote Sens, 2021, 174:19-34.DOI: 10.1016/j.isprsjprs.2021.01.026. |
[12] | BIENERT A, GEORGI L, KUNZ M, et al. Automatic extraction and measurement of individual trees from mobile laser scanning point clouds of forests[J]. Ann Bot, 2021, 128(6):787-804.DOI: 10.1093/aob/mcab087. |
[13] | XU S, SUN X Y, YUN J Y, et al. A new clustering-based framework to the stem estimation and growth fitting of street trees from mobile laser scanning data[J]. IEEE J Sel Top Appl Earth Obs Remote Sens, 1978, 13:3240-3250.DOI: 10.1109/JSTARS.2020.3001978. |
[14] | LI J T, CHENG X J, XIAO Z H. A branch-trunk-constrained hierarchical clustering method for street trees individual extraction from mobile laser scanning point clouds[J]. Measurement, 2022,189:110440.DOI: 10.1016/j.measurement.2021.110440. |
[15] | LI J T, CHENG X J. Supervoxel-based extraction and classification of pole-like objects from MLS point cloud data[J]. Opt Laser Technol, 2022,146:107562.DOI: 10.1016/j.optlastec.2021.107562. |
[16] | HAO W, WANG Y H, LI Y, et al. Hierarchical extraction of pole-like objects from scene point clouds[J]. Opt Eng, 2018, 57(8):1.DOI: 10.1117/1.oe.57.8.083106. |
[17] | WANG W Y, YU R, HUANG Q G, et al. SGPN:similarity group proposal network for 3D point cloud instance segmentation[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Salt Lake City,UT,USA.IEEE, 2018:2569-2578.DOI: 10.1109/CVPR.2018.00272. |
[18] | PHAM Q H, NGUYEN T, HUA B S, et al. JSIS3D:joint semantic-instance segmentation of 3D point clouds with multi-task pointwise networks and multi-value conditional random fields[C]// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).Long Beach,CA,USA.IEEE, 2019:8819-8828.DOI: 10.1109/CVPR.2019.00903. |
[19] | CHEN S Y, FANG J M, ZHANG Q, et al. Hierarchical aggregation for 3D instance segmentation[C]//2021 IEEE/CVF International Conference on Computer Vision (ICCV).Montreal,QC,Canada. IEEE,2021:15447-15456.DOI: 10.1109/ICCV48922.2021.01518. |
[20] | WANG Y, YU Y, LIU M. PointIT: a fast tracking framework based on 3D instance segmentation[J]. Computer Vision and Pattern Recognition, 2019(37):102-110. DOI:10.1109/ICCAIS59597.2023.10382343. |
[21] | HUA Z Y, XU S, LIU Y G. Individual tree segmentation from side-view LiDAR point clouds of street trees using shadow-cut[J]. Remote Sens, 2022, 14(22):5742.DOI: 10.3390/rs14225742. |
[22] | WEINMANN M, WEINMANN M, MALLET C, et al. A classification-segmentation framework for the detection of individual trees in dense MMS point cloud data acquired in urban areas[J]. Remote Sens, 2017, 9(3):277.DOI: 10.3390/rs9030277. |
[23] | FUKUNAGA K, HOSTETLER L. The estimation of the gradient of a density function,with applications in pattern recognition[J]. IEEE Trans Inf Theory, 1975, 21(1):32-40.DOI: 10.1109/TIT.1975.1055330. |
[24] | ESTER M, KRIEGEL H P, SANDER J, et al. A density-based algorithm for discovering clusters in large spatial databases with noise[C]// Proceedings of the Second International Conference on Knowledge Discovery and Data Mining.August, 1996, Portland,Oregon.ACM,1996:226-231.DOI: 10.5555/3001460.3001507. |
[25] | 于挺, 杨军. 基于K近邻卷积神经网络的点云模型识别与分类[J]. 激光与光电子学进展, 2020, 57(10):355-363. |
YU T, YANG J. Point cloud model recognition and classification based on K-nearest neighbor convolutional neural network[J]. Laser Optoelectron Prog, 2020, 57(10):355-363.DOI: 10.3788/LOP57.101510. | |
[26] | 薛玉玺, 李秋洁. 基于移动激光扫描的行道树靶标实时检测[J]. 林业工程学报, 2023, 8(1):150-156. |
XUE Y X, LI Q J. Real-time detection of street tree targets based on mobile laser scanning[J]. J For Eng, 2023, 8(1): 150-156. DOI: 10.13360/j.issn.2096-1359.202205039. | |
[27] | DAGHISTANI T, ALSHAMMARI R. Comparison of statistical logistic regression and Random Forest machine learning techniques in predicting diabetes[J]. J Adv Inf Technol, 2020:78-83.DOI: 10.12720/jait.11.2.78-83. |
[28] | QI C R, LI Y, HAO S, et al. PointNet++: deep hierarchical feature learning on point sets in a metric space: 10.48550/arXiv.1706.02413[P]. 2017. DOI:10.48550/arXiv.1706.02413. |
[1] | ZHONG Hao, WANG Chuhong, LIN Wenshu. Tree species identification of combined TLS date and UAV images [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2024, 48(4): 104-112. |
[2] | PAN Zhengshang, MA Kaisen, LONG Yi, LAI Zhengui, SUN Hua. An improved CART model for leaf and wood classification from LiDAR point clouds of Quercus glauca individual trees [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2024, 48(4): 123-131. |
[3] | YAN Yu, LI Qiujie. Online segmentation method of target point cloud in roadside tree [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2024, 48(4): 141-149. |
[4] | ZHOU Youfeng, XIE Binglou, LI Mingshi. Mapping regional forest aboveground biomass from random forest Co-Kriging approach: a case study from north Guangdong [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2024, 48(1): 169-178. |
[5] | DONG Hanyuan, YU Ying, FAN Wenyi. Verification of performance of understory terrain inversion from spaceborne lidar GEDI data [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2023, 47(2): 141-149. |
[6] | TANG Yiren, JIA Weiwei, WANG Fan, SUN Yuman, ZHANG Ying. Constructing a biomass model of Larix olgensis primary branches based on TLS [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2023, 47(2): 130-140. |
[7] | SUN Mingchen, JIANG Lichun. Standing volume prediction of Pinus sylvestris var. mongolica based on machine learning algorithm [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2023, 47(1): 31-37. |
[8] | WANG Tian, WANG Xuefeng, LIU Jiazheng. The prediction model of moisture content of young Aquilaria sinensis leaves based on RFE_RF algorithm [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2022, 46(4): 177-184. |
[9] | WU Jiong, JIANG Fugen, PENG Shaofeng, MA Kaisen, CHEN Song, SUN Hua. Estimating the tree height and yield of Camellia oleifera by combining crown volume [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2022, 46(2): 53-62. |
[10] | JU Yilin, JI Yongjie, HUANG Jimao, ZHANG Wangfei. Inversion of forest aboveground biomass using combination of LiDAR and multispectral data [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2022, 46(1): 58-68. |
[11] | JI Yelin, SU Xiyou, YU Zhijun. Potential habitat prediction of Hyphantria cunea based on a random forest model in China [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2019, 43(6): 121-128. |
[12] | ZHAO Yinghui, ZHANG Dali, ZHEN Zhen. Individual tree species classification based on nonparametric classification algorithms and multi-source remote sensing data [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2019, 43(5): 103-112. |
[13] | DU Xuehui, MENG Chun, LIU Meishuang. Research on feature selection based on single feature classification accuracy [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2019, 43(04): 109-116. |
[14] | ZHANG Mifang,HU Man,LI Mingyang. Estimation of stock volume of urban forest using fully polarimetric radar data of PALSAR [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2016, 40(06): 56-62. |
[15] | QIU Sai, XING Yanqiu, TIAN Jing, DING Jianhua. Estimation of forest canopy density based on ICESat-GLAS waveform data [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2016, 40(05): 99-106. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||