The genetic diversity analysis and molecular ID establishment of Chaenomeles speciosa based on SSR markers

LI Hui, HOU Lina, WANG Tianqi, BI Ningning, LI Shengbo, LIU Zhonghua

JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2025, Vol. 49 ›› Issue (1) : 59-68.

PDF(13892 KB)
PDF(13892 KB)
JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2025, Vol. 49 ›› Issue (1) : 59-68. DOI: 10.12302/j.issn.1000-2006.202301027

The genetic diversity analysis and molecular ID establishment of Chaenomeles speciosa based on SSR markers

Author information +
History +

Abstract

【Objective】Chaenomeles speciosa has high ornamental, edible, and medicinal values. China is the origin and distribution center of C. speciosa. The genetic diversity of Chaenomeles speciosa germplasm resources was studied, and the molecular identity card of varieties was constructed to solve the problems of lack of unified classification criteria among varieties, homonymous and synoonymous, and unclear origin and evolution among varieties in recent years.【Method】A total of 168 C. speciosa varieties and SSR (simple sequence repeats) markers were combined with capillary electrophoresis to analyze the genetic diversity and the degree of genetic differentiation. The observed number of alleles (Na), Shannon’s information index (I), and the polymorphism information content (PIC) were employed to screen primer combinations that can distinguish the entire germplasm and construct DNA molecular IDs based on string codes. 【Result】The results showed that 26 pairs of primers amplified 304 alleles in 168 C. speciosa varieties, with an average of 11.577 per locus. The average expected heterozygosity (He), I and PIC were determined as 0.748, 1.731 and 0.607, respectively. Based on the cluster analysis, the population could be divided into two groups, and further into six groups. Moreover, based on population structure analysis, the tested materials was divided into two subgroups. Four pairs of core primers were selected from 26 pairs of primers to construct barcode and two-dimensional code identification cards of C. speciosa varieties. 【Conclusion】The selected amplification loci have a high degree of variation and strong discrimination, and are thus suitable for applications in genetic diversity analysis, core primer screening, and fingerprint construction. The results can provide a reference for the variety identification, genetic resource management, and the construction of a germplasm resource database of C. speciosa.

Key words

Chaenomeles speciosa / genetic diversity / SSR / molecular ID

Cite this article

Download Citations
LI Hui , HOU Lina , WANG Tianqi , et al . The genetic diversity analysis and molecular ID establishment of Chaenomeles speciosa based on SSR markers[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2025, 49(1): 59-68 https://doi.org/10.12302/j.issn.1000-2006.202301027

References

[1]
陈红, 王关祥, 郑林, 等. 木瓜属(贴梗海棠)品种分类的研究历史与现状[J]. 山东林业科技, 2006, 36(5):70-71,78.
CHEN H, WANG G X, ZHENG L, et al. The studying history and current status of Chaenomeles[J]. J Shandong For Sci Technol, 2006, 36(5):70-71,78.DOI: 10.3969/j.issn.1002-2724.2006.05.031.
[2]
SINGH R B, SINGH B, SINGH R K. Evaluation of genetic diversity in Saccharum species clones and commercial varieties employing molecular (SSR) and physiological markers[J]. Ind Jour Plant Gene Resour, 2018, 31(1): 17.DOI: 10.5958/0976-1926.2018.00003.7.
[3]
王明明, 陈化榜, 王建华, 等. 木瓜属品种亲缘关系的SRAP分析[J]. 中国农业科学, 2010, 43(3):542-551.
WANG M M, CHEN H B, WANG J H, et al. Genetic relationship of Chaenomeles cultivars revealed by SRAP analysis[J]. Sci Agric Sin, 2010, 43(3):542-551.DOI: 10.3864/j.issn.0578-1752.2010.03.014.
[4]
HE J S, FAN J W, LI S B, et al. Genetic variability of cultivated Chaenomeles speciosa (Sweet) Nakai based on AFLP analysis[J]. Biochem Syst Ecol, 2014, 57:445-450.DOI: 10.1016/j.bse.2014.09.022.
[5]
张艳艳, 齐红, 郭庆梅, 等. 利用苹果EST-SSR分析木瓜属种质遗传多样性[J]. 生物技术通报, 2016, 32(7):93-98.
ZHANG Y Y, QI H, GUO Q M, et al. Analysis of genetic diversity in Chaenomeles using apple EST-SSRs[J]. Biotechnol Bull, 2016, 32(7):93-98.DOI: 10.13560/j.cnki.biotech.bull.1985.2016.07.014.
[6]
蒋小刚, 林先明, 张美德, 等. 基于ISSR分子标记的皱皮木瓜遗传多样性分析[J]. 分子植物育种, 2020, 18(21):7239-7245.
JIANG X G, LIN X M, ZHANG M D, et al. Genetic diversity analysis of Chaenomeles speciosa(sweet) nakai based on ISSR molecular markers[J]. Mol Plant Breed, 2020, 18(21):7239-7245.DOI: 10.13271/j.mpb.018.007239.
[7]
HECKENBERGER M, VAN DER VOORT J R, PELEMAN J, et al. Variation of DNA fingerprints among accessions within maize inbred lines and implications for identification of essentially derived varieties:II.genetic and technical sources of variation in AFLP data and comparison with SSR data[J]. Mol Breed, 2003, 12(2):97-106.DOI: 10.1023/A:1026040007166.
[8]
王凤格, 赵久然, 田红丽, 等. 农作物品种DNA指纹库构建研究进展[J]. 分子植物育种, 2015, 13(9):2118-2126.
WANG F G, ZHAO J R, TIAN H L, et al. The progress of the crop varieties DNA fingerprint database construction[J]. Mol Plant Breed, 2015, 13(9):2118-2126.DOI: 10.13271/j.mpb.013.002118.
[9]
徐雷锋, 葛亮, 袁素霞, 等. 利用荧光标记SSR构建百合种质资源分子身份证[J]. 园艺学报, 2014, 41(10):2055-2064.
XU L F, GE L, YUAN S X, et al. Using the fluorescent labeled SSR markers to establish molecular identity of lily germplasms[J]. Acta Hortic Sin, 2014, 41(10):2055-2064.DOI: 10.16420/j.issn.0513-353x.2014.10.012.
[10]
游倩. 甘蔗种质资源的SSR遗传多样性分析及指纹数据库构建[D]. 福州: 福建农林大学, 2014.
YOU Q. Genetic diversity analysis and database construction of DNA fingerprintings in sugarcane based on SSR fluorescence markers[D]. Fuzhou: Fujian Agriculture and Forestry University, 2014.
[11]
赵久然, 王凤格. 玉米品种指纹鉴定技术研究与应用[M]. 北京: 中国农业科学技术出版社, 2014.
ZHAO J R, WANG F G. Research and application of fingerprint identification technology of corn varieties[M]. Beijing: China Agricultural Science and Technology Press, 2014.
[12]
SCHUELKE M. An economic method for the fluorescent labeling of PCR fragments[J]. Nat Biotechnol, 2000, 18(2):233-234.DOI: 10.1038/72708.
[13]
HULCE D, LI X, SNYDERLEIBY T, et al. GeneMarker© genotyping software: tools to increase the statistical power of DNA fragment analysis[J]. J Biomol Tech, 2011, 22(Sl):35-36.
[14]
YEH F C, YANG R C, BOYLE T. POPGENE Version 1.32: microsoft Windows-based freeware for populations genetic analysis[EB/OL]. Edmonton: University of Alberta. (1999). [2022-03-20]. http://sites.ualberta.ca/-fyeh/popgene_download.html.
[15]
MARSHALL T C, SLATE J, KRUUK L E, et al. Statistical confidence for likelihood-based paternity inference in natural populations[J]. Mol Ecol, 1998, 7(5):639-655.DOI: 10.1046/j.1365-294x.1998.00374.x.
[16]
BASAK S, RAMESH A M, KESARI V, et al. Genetic diversity and relationship of Hedychium from northeast India as dissected using PCA analysis and hierarchical clustering[J]. Meta Gene, 2014, 2:459-468.DOI: 10.1016/j.mgene.2014.05.002.
[17]
LIU K J, MUSE S V. PowerMarker:an integrated analysis environment for genetic marker analysis[J]. Bioinformatics, 2005, 21(9):2128-2129.DOI: 10.1093/bioinformatics/bti282.
[18]
PRITCHARD J K, STEPHENS M, DONNELLY P. Inference of population structure using multilocus genotype data[J]. Genetics, 2000, 155(2):945-959.DOI: 10.1093/genetics/155.2.945.
[19]
李清, 罗永坚, 吴柔贤, 等. 广东省大豆种质资源遗传多样性分析及DNA分子身份证构建[J]. 广东农业科学, 2020, 47(12):221-228.
LI Q, LUO Y J, WU R X, et al. Analysis on genetic diversity and construction of DNA molecular identity card of soybean germplasm resources in Guangdong Province[J]. Guangdong Agric Sci, 2020, 47(12):221-228.DOI: 10.16768/j.issn.1004-874x.2020.12.023.
[20]
BOTSTEIN D, WHITE R L, SKOLNICK M, et al. Construction of a genetic linkage map in man using restriction fragment length polymorphisms[J]. Am J Hum Genet, 1980, 32(3):314-331.
[21]
EVANNO G, REGNAUT S, GOUDET J. Detecting the number of clusters of individuals using the software STRUCTURE:a simulation study[J]. Mol Ecol, 2005, 14(8):2611-2620.DOI: 10.1111/j.1365-294X.2005.02553.x.
[22]
陶乃奇, 张斌, 刘信凯, 等. 利用荧光标记SSR鉴别21个茶花新品种[J]. 植物学报, 2019, 54(1):37-45.
TAO N Q, ZHANG B, LIU X K, et al. Identification of 21 new Camellia hybrid varieties by fluorescence-labelled simple sequence repeat markers[J]. Chin Bull Bot, 2019, 54(1):37-45.DOI: 10.11983/CBB18019.
[23]
ZHAO Y N, WANG Y, WANG L X, et al. Molecular identification of mung bean accessions (Vigna radiata L.) from Northeast China using capillary electrophoresis with fluorescence-labeled SSR markers[J]. Food Energy Secur, 2020, 9(1):e182.DOI: 10.1002/fes3.182.
[24]
黄兴发, 尹跃, 赵建华, 等. 黑果枸杞基因组SSR标记开发及遗传多样性分析[J]. 西北农林科技大学学报(自然科学版), 2021, 49(1):126-135.
HUANG X F, YIN Y, ZHAO J H, et al. Development of genomic SSR markers and genetic diversity analysis of Lycium ruthenicum Murr[J]. J Northwest A F Univ (Nat Sci Ed), 2021, 49(1):126-135.DOI: 10.13207/j.cnki.jnwafu.2021.01.015.
[25]
AVVARU A K, SHARMA D, VERMA A, et al. MSDB:a comprehensive,annotated database of microsatellites[J]. Nucleic Acids Res, 2020, 48(D1):155-159.DOI: 10.1093/nar/gkz886.
[26]
杨凯敏, 李贵全, 郭数进, 等. 大豆自然群体SSR标记遗传多样性及其与农艺性状的关联分析[J]. 核农学报, 2014, 28(9):1576-1584.
YANG K M, LI G Q, GUO S J, et al. Genetic diversity and association analysis of agronomic traits with SSR in a natural population of soybean cultivars[J]. J Nucl Agric Sci, 2014, 28(9):1576-1584.DOI: 10.11869/j.issn.100-8551.2014.09.1576.
[27]
OHTSUBO K, NAKAMURA S. Cultivar identification of rice (Oryza sativa L.) by polymerase chain reaction method and its application to processed rice products[J]. J Agric Food Chem, 2007, 55(4):1501-1509.DOI: 10.1021/jf062737z.
[28]
DANGL G S, YANG J, GOLINO D A, et al. A practical method for almond cultivar identification and parental analysis using simple sequence repeat markers[J]. Euphytica, 2009, 168(1):41-48.DOI: 10.1007/s10681-008-9877-0.
[29]
陈昌文, 曹珂, 王力荣, 等. 中国桃主要品种资源及其野生近缘种的分子身份证构建[J]. 中国农业科学, 2011, 44(10):2081-2093.
CHEN C W, CAO K, WANG L R, et al. Molecular ID establishment of main China peach varieties and peach related species[J]. Sci Agric Sin, 2011, 44(10):2081-2093.DOI: 10.3846/j.issn.0578-175.2011.10.013.
PDF(13892 KB)

Accesses

Citation

Detail

Sections
Recommended
The full text is translated into English by AI, aiming to facilitate reading and comprehension. The core content is subject to the explanation in Chinese.

/