JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2023, Vol. 47 ›› Issue (6): 1-8.doi: 10.12302/j.issn.1000-2006.202302020
Previous Articles Next Articles
GUO Ying(), YANG Ganggui(), WU Yuhan, HE Jie, HE Yujie, LIAO Haoran, XUE Liangjiao()
Received:
2023-02-18
Revised:
2023-06-21
Online:
2023-11-30
Published:
2023-11-23
CLC Number:
GUO Ying, YANG Ganggui, WU Yuhan, HE Jie, HE Yujie, LIAO Haoran, XUE Liangjiao. Recent advances in molecular regulatory mechanisms of DNA methylation in plant tissue culture[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2023, 47(6): 1-8.
Table 1
Effects of DNA methylation on key genes of plant regeneration during plant tissue culture and development"
序号 No. | 基因名称 gene symbol | 功能 function | 物种 species |
---|---|---|---|
1 | ARR3 (arabidopsis response regulator 3) | 参与细胞分裂素调节;5-azaC处理后基因表达上调,发生低甲基化促进桃叶片愈伤组织诱导 | 桃 Prunus persica[ |
2 | BBM (baby boom) | 影响体细胞胚胎发生;表达量升高,甲基化水平降低促进胚胎发生(胚性愈伤组织中高表达) | 凹唇姜 Boesenbergia rotunda[ |
3 | CRY1 (cryptochrome 1) | 调节细胞分裂素信号,促进芽再生器官的新生 | 拟南芥 Arabidopsis thaliana[ |
4 | CCD1 (carotenoid cleavage dioxygenases 1) | 降解类胡萝卜素;5-azaC处理导致全基因组去甲基化,类胡萝卜素含量降低 | 柑橘 Citrus paradisi[ |
5 | CMT2/CMT3 (chromomethylase 2/chromomethylase 3) | 参与mCHG维持;5-azaC处理抑制了叶外植体愈伤组织的形成和不定芽再生 | 草莓 Fragaria vesca[ |
6 | CMT3 (chromomethylase 3) | 维持DNA甲基化;5-azaC处理后基因表达显著下调,DNA甲基化降低促进桃叶片愈伤组织诱导 | 桃 P. persica[ |
维持DNA甲基化;表达量升高DNA甲基化水平降低,促进体细胞胚胎的发生和再生 | 凹唇姜 B. rotunda[ | ||
7 | DRM2 (domains rearranged methyltransferase) | 维持CHH甲基化 | 毛果杨 Populus trichocarpa[ |
表达量升高DNA甲基化水平降低,促进体细胞胚胎的发生和再生 | 凹唇姜 B. rotunda[ | ||
8 | 维持CG甲基化;低甲基化,met1-3突变体芽再生能力更高 | 拟南芥 A. thaliana[ | |
MET1 (methyltransferase 1) | 维持DNA甲基化;表达量升高DNA甲基化水平降低,促进体细胞胚胎的发生和再生 | 凹唇姜 B. rotunda[ | |
维持DNA甲基化;幼苗和嫩叶中偏好表达 | 柑橘 C. paradisi[ | ||
9 | ROS1 (repressor of silencing 1) | DNA甲基化水平降低,促进球状胚形成 | 龙眼 Dimocarpus longan[ |
10 | SERK (somatic embryogenesis receptor-like kinase) | 影响体细胞胚胎发生;表达量升高,甲基化水平降低促进胚胎发生(胚性愈伤组织中高表达) | 凹唇姜 B. rotunda[ |
11 | WIN (wound-induced) | 诱导细胞去分化和增殖;发生去甲基化,基因表达上调促进愈伤组织形成 | 草莓 F. nilgerrensis[ |
12 | WOX (wuschel-related homeobox) | 参与顶端分生组织发生;发生去甲基化,基因表达上调促进愈伤组织形成 | 草莓 F. nilgerrensis[ |
13 | WUS (wuschel-related homeobox) | 调控植物再生;低甲基化激活了生长素和WUS相关基因表达,提高植物再生能力 | 棉花 Gossypium hirsutum[ |
影响体细胞胚胎发生;表达量升高,甲基化水平降低促进胚胎发生(分生组织中表达最高,其次是胚性愈伤) | 凹唇姜 B. rotunda[ |
[1] | 赵翔宇. 植物组织培养在林木遗传育种中的应用[J]. 河南农业, 2022(11):51-52. |
ZHAO X Y. Application of plant tissue culture in forest genetic breeding[J]. Agric Henan, 2022(11):51-52.DOI: 10.15904/j.cnki.hnny.2022.11.011. | |
[2] | 巩振辉, 申书兴. 植物组织培养[M]. 3版. 北京: 化学工业出版社, 2022:12-17. |
GONG Z H, SHEN S X. Plant tissue culture[M]. 3rd ed. Beijing: Chemical Industry Press, 2022:12-17. | |
[3] | SIVANESAN I, NAYEEM S, VENKIDASAMY B, et al. Genetic and epigenetic modes of the regulation of somatic embryogenesis:a review[J]. Biol Futur, 2022, 73(3):259-277.DOI: 10.1007/s42977-022-00126-3. |
[4] | 樊龙江. 植物基因组学[M]. 北京: 科学出版社, 2020:68-69. |
FAN L J. Plant genomics[M]. Beijing: Science Press, 2020:68-69. | |
[5] | HE X J, CHEN T P, ZHU J K. Regulation and function of DNA methylation in plants and animals[J]. Cell Res, 2011, 21(3):442-465.DOI: 10.1038/cr.2011.23. |
[6] | LEE K, SEO P J. Dynamic epigenetic changes during plant regeneration[J]. Trends Plant Sci, 2018, 23(3):235-247.DOI: 10.1016/j.tplants.2017.11.009. |
[7] | ZHANG H M, LANG Z B, ZHU J K. Dynamics and function of DNA methylation in plants[J]. Nat Rev Mol Cell Biol, 2018, 19(8):489-506.DOI: 10.1038/s41580-018-0016-z. |
[8] | LEE K, PARK O S, SEO P J. JMJ30-mediated demethylation of H3K9me3 drives tissue identity changes to promote callus formation in Arabidopsis[J]. Plant J, 2018, 95(6):961-975.DOI: 10.1111/tpj.14002. |
[9] | LIU D C, MU Q, LI X Y, et al. The callus formation capacity of strawberry leaf explant is modulated by DNA methylation[J]. Hortic Res, 2022, 9:uhab073.DOI: 10.1093/hr/uhab073. |
[10] | GHOSH A, IGAMBERDIEV A U, DEBNATH S C. Detection of DNA methylation pattern in thidiazuron-induced blueberry callus using methylation-sensitive amplification polymorphism[J]. Biol Plant, 2017, 61(3):511-519.DOI: 10.1007/s10535-016-0678-3. |
[11] | KRIZOVA K, FOJTOVA M, DEPICKER A, et al. Cell culture-induced gradual and frequent epigenetic reprogramming of invertedly repeated tobacco transgene epialleles[J]. Plant Physiol, 2009, 149(3):1493-1504.DOI: 10.1104/pp.108.133165. |
[12] | VINING K, POMRANING K R, WILHELM L J, et al. Methylome reorganization during in vitro dedifferentiation and regeneration of Populus trichocarpa[J]. BMC Plant Biol, 2013, 13:92.DOI: 10.1186/1471-2229-13-92. |
[13] | IKEUCHI M, SUGIMOTO K, IWASE A. Plant callus:mechanisms of induction and repression[J]. Plant Cell, 2013, 25(9):3159-3173.DOI: 10.1105/tpc.113.116053. |
[14] | KARIM R, TAN Y S, SINGH P, et al. Expression and DNA methylation of SERK,BBM,LEC2 and WUS genes in in vitro cultures of Boesenbergia rotunda (L.) Mansf[J]. Physiol Mol Biol Plants, 2018, 24(5):741-751.DOI: 10.1007/s12298-018-0566-8. |
[15] | GAO Y, RAN L, KONG Y, et al. Assessment of DNA methylation changes in tissue culture of Brassica napus[J]. Genetika, 2014, 50(11):1338-1344.DOI: 10.7868/s001667581410004x. |
[16] | ZAKRZEWSKI F, SCHMIDT M, VAN LIJSEBETTENS M, et al. DNA methylation of retrotransposons,DNA transposons and genes in sugar beet (Beta vulgaris L.)[J]. Plant J, 2017, 90(6):1156-1175.DOI: 10.1111/tpj.13526. |
[17] | STROUD H, DING B, SIMON S A, et al. Plants regenerated from tissue culture contain stable epigenome changes in rice[J]. eLife, 2013, 2:e00354.DOI: 10.7554/eLife.00354. |
[18] | SMITH J, SEN S, WEEKS R J, et al. Promoter DNA hypermethylation and paradoxical gene activation[J]. Trends Cancer, 2020, 6(5):392-406.DOI: 10.1016/j.trecan.2020.02.007. |
[19] | MA Q X, ZHOU W Z, ZHANG P. Transition from somatic embryo to friable embryogenic callus in cassava:dynamic changes in cellular structure,physiological status,and gene expression profiles[J]. Front Plant Sci, 2015, 6:824.DOI: 10.3389/fpls.2015.00824. |
[20] | ZENG F S, SUN F K, LIANG N S, et al. Dynamic change of DNA methylation and cell redox state at different micropropagation phases in birch[J]. Trees, 2015, 29(3):917-930.DOI: 10.1007/s00468-015-1174-7. |
[21] | LIN W Q, XIAO X O, ZHANG H N, et al. Whole-genome bisulfite sequencing reveals a role for DNA methylation in variants from callus culture of pineapple (Ananas comosus L.)[J]. Genes, 2019, 10(11):877.DOI: 10.3390/genes10110877. |
[22] | LIZAMORE D, BICKNELL R, WINEFIELD C. Elevated transcription of transposable elements is accompanied by het-siRNA-driven de novo DNA methylation in grapevine embryogenic callus[J]. BMC Genomics, 2021, 22(1):676.DOI: 10.1186/s12864-021-07973-9. |
[23] | SHIM S, LEE H G, PARK O S, et al. Dynamic changes in DNA methylation occur in TE regions and affect cell proliferation during leaf-to-callus transition in Arabidopsis[J]. Epigenetics, 2022, 17(1):41-58.DOI: 10.1080/15592294.2021.1872927. |
[24] | ALI SHAIKH A, CHACHAR S, CHACHAR M, et al. Recent advances in DNA methylation and their potential breeding applications in plants[J]. Horticulturae, 2022, 8(7):562.DOI: 10.3390/horticulturae8070562. |
[25] | BARTELS A, HAN Q, NAIR P, et al. Dynamic DNA methylation in plant growth and development[J]. Int J Mol Sci, 2018, 19(7):2144.DOI: 10.3390/ijms19072144. |
[26] | GAO Y R, SUN J C, SUN Z L, et al. The MADS-box transcription factor CmAGL11 modulates somatic embryogenesis in Chinese chestnut (Castanea mollissima Blume)[J]. J Integr Agric, 2020, 19(4):1033-1043.DOI: 10.1016/S2095-3119(20)63157-4. |
[27] | LUAN A P, CHEN C J, XIE T, et al. Methylation analysis of CpG islands in pineapple SERK1 promoter[J]. Genes, 2020, 11(4):425.DOI: 10.3390/genes11040425. |
[28] | SALAÜN C, LEPINIEC L, DUBREUCQ B. Genetic and molecular control of somatic embryogenesis[J]. Plants, 2021, 10(7):1467.DOI: 10.3390/plants10071467. |
[29] | DE ARAÚJO S I M, GOMES A C M M, SCHERWINSKI-PEREIRA J E. Cellular responses of oil palm genotypes during somatic embryogenesis involve participation of procambial cells,DNA demethylation,and auxin accumulation[J]. Plant Cell Rep, 2022, 41(9):1875-1893.DOI: 10.1007/s00299-022-02898-3. |
[30] | CHEN X H, XU X P, SHEN X, et al. Genome-wide investigation of DNA methylation dynamics reveals a critical role of DNA demethylation during the early somatic embryogenesis of Dimocarpus longan Lour[J]. Tree Physiol, 2020, 40(12):1807-1826.DOI: 10.1093/treephys/tpaa097. |
[31] | GUO H H, FAN Y J, GUO H X, et al. Somatic embryogenesis critical initiation stage-specificm CHH hypomethylation reveals epigenetic basis underlying embryogenic redifferentiation in cotton[J]. Plant Biotechnol J, 2020, 18(8):1648-1650.DOI: 10.1111/pbi.13336. |
[32] | GARCIA C, DE FURTADO ALMEIDA A A, COSTA M, et al. Single-base resolution methylomes of somatic embryogenesis in Theobroma cacao L.reveal epigenome modifications associated with somatic embryo abnormalities[J]. Sci Rep, 2022, 12(1):15097.DOI: 10.1038/s41598-022-18035-9. |
[33] | OSORIO-MONTALVO P, DE-LA-PEÑA C, OROPEZA C, et al. A peak in global DNA methylation is a key step to initiate the somatic embryogenesis of coconut palm (Cocos nucifera L)[J]. Plant Cell Rep, 2020, 39(10):1345-1357.DOI: 10.1007/s00299-020-02568-2. |
[34] | DU X, YANG Z L, XIE G H, et al. Molecular basis of the plant ROS1-mediated active DNA demethylation[J]. Nat Plants, 2023, 9(2):271-279.DOI: 10.1038/s41477-022-01322-8. |
[35] | CHEN R Z, CHEN X H, HUO W, et al. Transcriptome analysis of azacitidine (5-AzaC)-treatment affecting the development of early somatic embryogenesis in Longan[J]. J Hortic Sci Biotechnol, 2021, 96(3):311-323.DOI: 10.1080/14620316.2020.1847695. |
[36] | SANTOS D, FEVEREIRO P. Loss of DNA methylation affects somatic embryogenesis in Medicago truncatula[J]. Plant Cell Tissue Organ Cult, 2002, 70(2):155-161.DOI: 10.1023/A:1016369921067. |
[37] | WÓJCIKOWSKA B, GAJ M D. Expression profiling of auxin response factor genes during somatic embryogenesis induction in Arabidopsis[J]. Plant Cell Rep, 2017, 36(6):843-858.DOI: 10.1007/s00299-017-2114-3. |
[38] | GRZYBKOWSKA D, MORONCZYK J, WÓJCIKOWSKA B, et al. Azacitidine (5-AzaC)-treatment and mutations in DNA methylase genes affect embryogenic response and expression of the genes that are involved in somatic embryogenesis in Arabidopsis[J]. Plant Growth Regul, 2018, 85(2):243-256.DOI: 10.1007/s10725-018-0389-1. |
[39] | GAO Y, CUI Y, ZHAO R R, et al. Cryo-treatment enhances the embryogenicity of mature somatic embryos via the lncRNA-miRNA-mRNA network in white spruce[J]. Int J Mol Sci, 2022, 23(3):1111.DOI: 10.3390/ijms23031111. |
[40] | CASTANDER-OLARIETA A, PEREIRA C, SALES E, et al. Induction of Radiata pine somatic embryogenesis at high temperatures provokes a long-term decrease in DNA methylation/hydroxymethylation and differential expression of stress-related genes[J]. Plants, 2020, 9(12):1762.DOI: 10.3390/plants9121762. |
[41] | PACHOTA K A, ORŁOWSKA R. Effect of copper and silver ions on sequence and DNA methylation changes in triticale regenerants gained via somatic embryogenesis[J]. J Appl Genet, 2022, 63(4):663-675.DOI: 10.1007/s13353-022-00717-9. |
[42] | SHEMER O, LANDAU U, CANDELA H, et al. Competency for shoot regeneration from Arabidopsis root explants is regulated by DNA methylation[J]. Plant Sci, 2015, 238:251-261.DOI: 10.1016/j.plantsci.2015.06.015. |
[43] | SHIBUKAWA T, YAZAWA K, KIKUCHI A, et al. Possible involvement of DNA methylation on expression regulation of carrot LEC1 gene in its 5'-upstream region[J]. Gene, 2009, 437(1/2):22-31.DOI: 10.1016/j.gene.2009.02.011. |
[44] | DAI X H, WANG J, SONG Y G, et al. Cytosine methylation of the FWA promoter promotes direct in vitro shoot regeneration in Arabidopsis thaliana[J]. J Integr Plant Biol, 2021, 63(8):1491-1504.DOI: 10.1111/jipb.13156. |
[45] | LIU X, ZHU K,& XIAO J. Recent advances in understanding of the epigenetic regulation of plant regeneration[J]. aBioTech, 2023, 4(1): 31-46.DOI:10.1007/s42994-022-00093-2. |
[46] | SHIM S, LEE H G, SEO P J. MET1-dependent DNA methylation represses light signaling and influences plant regeneration in Arabidopsis[J]. Mol Cells, 2021, 44(10):746-757.DOI: 10.14348/molcells.2021.0160. |
[47] | XU J, WANG X, CAO H, et al. Dynamic changes in methylome and transcriptome patterns in response to methyltransferase inhibitor 5-azacytidine treatment in citrus[J]. DNA Res, 2017, 24:509-522.DOI:10.1093/dnares/dsx021. |
[48] | KARIM R, TAN Y S, SINGH P, et al. Expression and DNA methylation of SERK,BBM,LEC2 and WUS genes in in vitro cultures of Boesenbergia rotunda (L.) Mansf[J]. Physiol Mol Biol Plants, 2018, 24(5):741-751.DOI: 10.1007/s12298-018-0566-8. |
[49] | VININ K, POMRANING K R, WILHELM L J, et al. Methylome reorganization during in vitro dedifferentiation and regeneration of Populus trichocarpa[J]. BMC plant biology, 2013, 13:1-15.DOI:10.1186/1471-2229-13-92. |
[50] | CAO Q, FENG Y X, DAI X W, et al. Dynamic changes of DNA methylation during wild strawberry (Fragaria nilgerrensis) tissue culture[J]. Front Plant Sci, 2021, 12:765383.DOI: 10.3389/fpls.2021.765383. |
[51] | LI J Y, WANG M J, LI Y J, et al. Multi-omics analyses reveal epigenomics basis for cotton somatic embryogenesis through successive regeneration acclimation process[J]. Plant Biotechnol J, 2019, 17(2):435-450.DOI: 10.1111/pbi.12988. |
[52] | LAW J A, JACOBSEN S E. Establishing,maintaining and modifying DNA methylation patterns in plants and animals[J]. Nat Rev Genet, 2010, 11(3):204-220.DOI: 10.1038/nrg2719. |
[53] | LI W, LIU H, CHENG Z J, et al. DNA methylation and histone modifications regulate de novo shoot regeneration in Arabidopsis by modulating WUSCHEL expression and auxin signaling[J]. PLoS Genet, 2011, 7(8):e1002243.DOI: 10.1371/journal.pgen.1002243. |
[54] | LIU H, ZHANG H, DONG Y X, et al. DNA Methyltransferase 1-mediated shoot regeneration is regulated by cytokinin-induced cell cycle in Arabidopsis[J]. New Phytol, 2018, 217(1):219-232.DOI: 10.1111/nph.14814. |
[55] | YAARI R, KATZ A, DOMB K, et al. RdDM-independent de novo and heterochromatin DNA methylation by plant CMT and DNMT3 orthologs[J]. Nat Commun, 2019, 10(1):1613.DOI: 10.1038/s41467-019-09496-0. |
[56] | GAO Y, CHEN X Y, CUI Y, et al. Effects of medium supplements on somatic embryo maturation and DNA methylation in Pseudotsuga gaussenii Flous,a species under protection[J]. Forests, 2022, 13(2):288.DOI: 10.3390/f13020288. |
[57] | ERDMANN R M, PICARD C L. RNA-directed DNA methylation[J]. PLoS Genet, 2020, 16(10):e1009034.DOI: 10.1371/journal.pgen.1009034. |
[58] | JI L X, MATHIONI S M, JOHNSON S, et al. Genome-wide reinforcement of DNA methylation occurs during somatic embryogenesis in soybean[J]. Plant Cell, 2019, 31(10):2315-2331.DOI: 10.1105/tpc.19.00255. |
[59] | GIRI C C, SHYAMKUMAR B, ANJANEYULU C. Progress in tissue culture, genetic transformation and applications of biotechnology to trees: an overview[J]. Trees, 2004, 18:115-135. DOI 10.1007/s00468-003-0287-6. |
[60] | BARGHCHI M, ALDERSON P G. The control of shoot tip necrosis in Pistacia vera L. in vitro[J]. Plant growth regulation, 1996, 20:31-35. |
[61] | GUTIERREZ-ARCELU, MARI, LAPPALATNEN T, et al. Passive and active DNA methylation and the interplay with genetic variation in gene regulation[J]. elife, 2013, 2: e00523.DOI:10.7554/eLife.00523.001. |
[1] | HUANG Biyun, ZHUO Renying, QIAO Guirong. Comparative analysis of different types of callus in moso bamboo [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2023, 47(6): 141-149. |
[2] | WANG Ji, FANG Shengzuo. Effects of different anti-browning agents on enzyme activity and growth in callus of Cyclocarya paliurus [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2023, 47(6): 167-174. |
[3] | CHENG Fang, SUN Tingyu, YE Jianren. Induction of embryogenic callus from immature zygotic embryos of Pinus elliottii resistant to brown spot needle blight (pathogen: Lecanosticta acicola) [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2023, 47(6): 175-182. |
[4] | MA Juanjuan, WU Qinxia, CHEN Ying, WANG Ruimin, YUAN Binling, HU Yuchen, CAO Fuliang. The relationship between physiological metabolism changes and embryogenic competence of endosperm in Ginkgo biloba at different developmental stages [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2022, 46(4): 68-76. |
[5] | GAO Yan, MO Jianbin, FU Yanru, FENG Shucheng. Tissue culture and plant regeneration of Clematis ‘Julka’ [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2021, 45(3): 109-116. |
[6] | SHE Lulu, WANG Weijuan, SONG Jingjing, LU Cunfu, CHEN Yuzhen. Effect of cold acclimation on freezing tolerance and antioxidant enzyme activities of callus of Tibet Saussurea laniceps Hand.-Mazz [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2019, 43(5): 181-186. |
[7] | CHEN Tingting,YE Jianren,WU Xiaoqin,SHEN Liyuan,ZHU Lihua. Somatic embryogenesis and plantlet regeneration of disease-resistant Pinus massoniana Lamb. [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2019, 43(03): 1-8. |
[8] | SUN Yonglian, DAI Xiaogang, LI Xiaoping, CHEN Yingnan. Plant regeneration of Salix suchowensis through tissue culture [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2019, 43(02): 31-37. |
[9] | YAN Pan, PENG Fangren, ZHANG Rui, CAO Mingmin, ZHAI Min, LIU Zhuangzhuang. Histo-cytological observation on the graft union formation in Carya illinoinensis [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2018, 42(02): 202-206. |
[10] | CHENG Tielong, MENG Yan,CHEN Jinhui,SHI Jisen. Effects of methyl jasmonic acid on somatic embryogenesis of Liriodendron hybrid [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2017, 41(06): 41-46. |
[11] | GAO Fang, SHEN Hailong, LIU Chunping, WANG Yi, ZHANG Peng, YANG Ling. Optimization of culture conditions and selection of suitable explants for callus induction from mature embryo of Pinus koraiensis [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2017, 41(03): 43-50. |
[12] | XU Jianxiu,WU Jing, YE Jianren, WU Xiaoqin. Maintenance and proliferation of embryogenic callus in nematode-resistant Pinus densiflora [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2017, 41(01): 49-54. |
[13] | DONG Jing, SHI Jisen, XU Jin. Callus induction and plant regeneration from zygotic embryos of Cryptomeria fortunei [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2016, 40(06): 181-186. |
[14] | LU Lu, LU Ye, SHENG Yu, ZHENG Chen, SHI Jisen, CHEN Jinhui. Effects of different activated carbon on somatic embryogenesis of Liriodendron hybrids [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2016, 40(02): 59-64. |
[15] | HAN Shan, ZHU Tianhui, QIAO Tianmin, LI Shujiang, WANG Ju, ZHANG Boyang. Resistance responses of Castanea mollissima callus to Cp-toxin under Cryphonectria parasitica stress [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2015, 39(05): 1-6. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||