Recent advances in molecular regulatory mechanisms of DNA methylation in plant tissue culture

GUO Ying, YANG Ganggui, WU Yuhan, HE Jie, HE Yujie, LIAO Haoran, XUE Liangjiao

JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2023, Vol. 47 ›› Issue (6) : 1-8.

PDF(6225 KB)
PDF(6225 KB)
JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2023, Vol. 47 ›› Issue (6) : 1-8. DOI: 10.12302/j.issn.1000-2006.202302020

Recent advances in molecular regulatory mechanisms of DNA methylation in plant tissue culture

Author information +
History +

Abstract

Exerting remarkable cell totipotence, plants are able to regenerate tissues/organs and even individuals from differentiated cells activated by wound stress and/or hormonal cues. Based on the theory of plant cell totipotency, techniques of plant tissue culture have been widely used in rapid propagation, germplasm conservation, and plant breeding as a type of conserved epigenetic modification. However, the understanding of how plant cells retain both differentiated status and developmental plasticity is still obscure, especially at the epigenetic level. DNA methylation is an evolutionarily conserved epigenetic modification that can intricately coordinate cell fate transition and pluripotency establishment during the plant regenerate process. In the work, the recent progress in the regulation of plant regeneration through DNA methylation was summarized, starting from the formation of callus and somatic embryogenesis during tissue culture. Firstly, the change patterns of DNA methylation in different plant regeneration processes were analyzed, showing that both explants type and regeneration phase had an effect on DNA methylation levels. The role of some DNA methyltransferase in plant regeneration was studied, such as DNA Methyltransferase1 (MET1), whose deletion can lead to increased WUS expression and promote shoot regeneration. RNA-directed DNA methylation (RdDM) is the main molecular pathway responsible for de novo DNA methylation in all contexts and is believed to play an important role in plant regeneration. Meanwhile, we analyzed the molecular regulatory mechanisms of DNA methylation on the expression of regenerative genes, such as BBM (baby boom), WOX (wuschel-related homeobox), WIN (wound induced dedifferentiation), etc. Finally, we discussed the future research directions of DNA methylation in the field of plant regeneration. The combination of tissue culture and genetic engineering will provide opportunities for efficient reproduction and precise cultivation of agricultural and forestry crops. Further, the regeneration-related genes reported in this study will provide candidates for plant regeneration research of genetic and molecular mechanisms.

Key words

plant tissue culture / DNA methylation / callus / somatic embryogenesis

Cite this article

Download Citations
GUO Ying , YANG Ganggui , WU Yuhan , et al . Recent advances in molecular regulatory mechanisms of DNA methylation in plant tissue culture[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2023, 47(6): 1-8 https://doi.org/10.12302/j.issn.1000-2006.202302020

References

[1]
赵翔宇. 植物组织培养在林木遗传育种中的应用[J]. 河南农业, 2022(11):51-52.
ZHAO X Y. Application of plant tissue culture in forest genetic breeding[J]. Agric Henan, 2022(11):51-52.DOI: 10.15904/j.cnki.hnny.2022.11.011.
[2]
巩振辉, 申书兴. 植物组织培养[M]. 3版. 北京: 化学工业出版社, 2022:12-17.
GONG Z H, SHEN S X. Plant tissue culture[M]. 3rd ed. Beijing: Chemical Industry Press, 2022:12-17.
[3]
SIVANESAN I, NAYEEM S, VENKIDASAMY B, et al. Genetic and epigenetic modes of the regulation of somatic embryogenesis:a review[J]. Biol Futur, 2022, 73(3):259-277.DOI: 10.1007/s42977-022-00126-3.
[4]
樊龙江. 植物基因组学[M]. 北京: 科学出版社, 2020:68-69.
FAN L J. Plant genomics[M]. Beijing: Science Press, 2020:68-69.
[5]
HE X J, CHEN T P, ZHU J K. Regulation and function of DNA methylation in plants and animals[J]. Cell Res, 2011, 21(3):442-465.DOI: 10.1038/cr.2011.23.
[6]
LEE K, SEO P J. Dynamic epigenetic changes during plant regeneration[J]. Trends Plant Sci, 2018, 23(3):235-247.DOI: 10.1016/j.tplants.2017.11.009.
[7]
ZHANG H M, LANG Z B, ZHU J K. Dynamics and function of DNA methylation in plants[J]. Nat Rev Mol Cell Biol, 2018, 19(8):489-506.DOI: 10.1038/s41580-018-0016-z.
[8]
LEE K, PARK O S, SEO P J. JMJ30-mediated demethylation of H3K9me3 drives tissue identity changes to promote callus formation in Arabidopsis[J]. Plant J, 2018, 95(6):961-975.DOI: 10.1111/tpj.14002.
[9]
LIU D C, MU Q, LI X Y, et al. The callus formation capacity of strawberry leaf explant is modulated by DNA methylation[J]. Hortic Res, 2022, 9:uhab073.DOI: 10.1093/hr/uhab073.
[10]
GHOSH A, IGAMBERDIEV A U, DEBNATH S C. Detection of DNA methylation pattern in thidiazuron-induced blueberry callus using methylation-sensitive amplification polymorphism[J]. Biol Plant, 2017, 61(3):511-519.DOI: 10.1007/s10535-016-0678-3.
[11]
KRIZOVA K, FOJTOVA M, DEPICKER A, et al. Cell culture-induced gradual and frequent epigenetic reprogramming of invertedly repeated tobacco transgene epialleles[J]. Plant Physiol, 2009, 149(3):1493-1504.DOI: 10.1104/pp.108.133165.
[12]
VINING K, POMRANING K R, WILHELM L J, et al. Methylome reorganization during in vitro dedifferentiation and regeneration of Populus trichocarpa[J]. BMC Plant Biol, 2013, 13:92.DOI: 10.1186/1471-2229-13-92.
[13]
IKEUCHI M, SUGIMOTO K, IWASE A. Plant callus:mechanisms of induction and repression[J]. Plant Cell, 2013, 25(9):3159-3173.DOI: 10.1105/tpc.113.116053.
[14]
KARIM R, TAN Y S, SINGH P, et al. Expression and DNA methylation of SERK,BBM,LEC2 and WUS genes in in vitro cultures of Boesenbergia rotunda (L.) Mansf[J]. Physiol Mol Biol Plants, 2018, 24(5):741-751.DOI: 10.1007/s12298-018-0566-8.
[15]
GAO Y, RAN L, KONG Y, et al. Assessment of DNA methylation changes in tissue culture of Brassica napus[J]. Genetika, 2014, 50(11):1338-1344.DOI: 10.7868/s001667581410004x.
[16]
ZAKRZEWSKI F, SCHMIDT M, VAN LIJSEBETTENS M, et al. DNA methylation of retrotransposons,DNA transposons and genes in sugar beet (Beta vulgaris L.)[J]. Plant J, 2017, 90(6):1156-1175.DOI: 10.1111/tpj.13526.
[17]
STROUD H, DING B, SIMON S A, et al. Plants regenerated from tissue culture contain stable epigenome changes in rice[J]. eLife, 2013, 2:e00354.DOI: 10.7554/eLife.00354.
[18]
SMITH J, SEN S, WEEKS R J, et al. Promoter DNA hypermethylation and paradoxical gene activation[J]. Trends Cancer, 2020, 6(5):392-406.DOI: 10.1016/j.trecan.2020.02.007.
[19]
MA Q X, ZHOU W Z, ZHANG P. Transition from somatic embryo to friable embryogenic callus in cassava:dynamic changes in cellular structure,physiological status,and gene expression profiles[J]. Front Plant Sci, 2015, 6:824.DOI: 10.3389/fpls.2015.00824.
[20]
ZENG F S, SUN F K, LIANG N S, et al. Dynamic change of DNA methylation and cell redox state at different micropropagation phases in birch[J]. Trees, 2015, 29(3):917-930.DOI: 10.1007/s00468-015-1174-7.
[21]
LIN W Q, XIAO X O, ZHANG H N, et al. Whole-genome bisulfite sequencing reveals a role for DNA methylation in variants from callus culture of pineapple (Ananas comosus L.)[J]. Genes, 2019, 10(11):877.DOI: 10.3390/genes10110877.
[22]
LIZAMORE D, BICKNELL R, WINEFIELD C. Elevated transcription of transposable elements is accompanied by het-siRNA-driven de novo DNA methylation in grapevine embryogenic callus[J]. BMC Genomics, 2021, 22(1):676.DOI: 10.1186/s12864-021-07973-9.
[23]
SHIM S, LEE H G, PARK O S, et al. Dynamic changes in DNA methylation occur in TE regions and affect cell proliferation during leaf-to-callus transition in Arabidopsis[J]. Epigenetics, 2022, 17(1):41-58.DOI: 10.1080/15592294.2021.1872927.
[24]
ALI SHAIKH A, CHACHAR S, CHACHAR M, et al. Recent advances in DNA methylation and their potential breeding applications in plants[J]. Horticulturae, 2022, 8(7):562.DOI: 10.3390/horticulturae8070562.
[25]
BARTELS A, HAN Q, NAIR P, et al. Dynamic DNA methylation in plant growth and development[J]. Int J Mol Sci, 2018, 19(7):2144.DOI: 10.3390/ijms19072144.
[26]
GAO Y R, SUN J C, SUN Z L, et al. The MADS-box transcription factor CmAGL11 modulates somatic embryogenesis in Chinese chestnut (Castanea mollissima Blume)[J]. J Integr Agric, 2020, 19(4):1033-1043.DOI: 10.1016/S2095-3119(20)63157-4.
[27]
LUAN A P, CHEN C J, XIE T, et al. Methylation analysis of CpG islands in pineapple SERK1 promoter[J]. Genes, 2020, 11(4):425.DOI: 10.3390/genes11040425.
[28]
SALAÜN C, LEPINIEC L, DUBREUCQ B. Genetic and molecular control of somatic embryogenesis[J]. Plants, 2021, 10(7):1467.DOI: 10.3390/plants10071467.
[29]
DE ARAÚJO S I M, GOMES A C M M, SCHERWINSKI-PEREIRA J E. Cellular responses of oil palm genotypes during somatic embryogenesis involve participation of procambial cells,DNA demethylation,and auxin accumulation[J]. Plant Cell Rep, 2022, 41(9):1875-1893.DOI: 10.1007/s00299-022-02898-3.
[30]
CHEN X H, XU X P, SHEN X, et al. Genome-wide investigation of DNA methylation dynamics reveals a critical role of DNA demethylation during the early somatic embryogenesis of Dimocarpus longan Lour[J]. Tree Physiol, 2020, 40(12):1807-1826.DOI: 10.1093/treephys/tpaa097.
[31]
GUO H H, FAN Y J, GUO H X, et al. Somatic embryogenesis critical initiation stage-specificm CHH hypomethylation reveals epigenetic basis underlying embryogenic redifferentiation in cotton[J]. Plant Biotechnol J, 2020, 18(8):1648-1650.DOI: 10.1111/pbi.13336.
[32]
GARCIA C, DE FURTADO ALMEIDA A A, COSTA M, et al. Single-base resolution methylomes of somatic embryogenesis in Theobroma cacao L.reveal epigenome modifications associated with somatic embryo abnormalities[J]. Sci Rep, 2022, 12(1):15097.DOI: 10.1038/s41598-022-18035-9.
[33]
OSORIO-MONTALVO P, DE-LA-PEÑA C, OROPEZA C, et al. A peak in global DNA methylation is a key step to initiate the somatic embryogenesis of coconut palm (Cocos nucifera L)[J]. Plant Cell Rep, 2020, 39(10):1345-1357.DOI: 10.1007/s00299-020-02568-2.
[34]
DU X, YANG Z L, XIE G H, et al. Molecular basis of the plant ROS1-mediated active DNA demethylation[J]. Nat Plants, 2023, 9(2):271-279.DOI: 10.1038/s41477-022-01322-8.
[35]
CHEN R Z, CHEN X H, HUO W, et al. Transcriptome analysis of azacitidine (5-AzaC)-treatment affecting the development of early somatic embryogenesis in Longan[J]. J Hortic Sci Biotechnol, 2021, 96(3):311-323.DOI: 10.1080/14620316.2020.1847695.
[36]
SANTOS D, FEVEREIRO P. Loss of DNA methylation affects somatic embryogenesis in Medicago truncatula[J]. Plant Cell Tissue Organ Cult, 2002, 70(2):155-161.DOI: 10.1023/A:1016369921067.
[37]
WÓJCIKOWSKA B, GAJ M D. Expression profiling of auxin response factor genes during somatic embryogenesis induction in Arabidopsis[J]. Plant Cell Rep, 2017, 36(6):843-858.DOI: 10.1007/s00299-017-2114-3.
[38]
GRZYBKOWSKA D, MORONCZYK J, WÓJCIKOWSKA B, et al. Azacitidine (5-AzaC)-treatment and mutations in DNA methylase genes affect embryogenic response and expression of the genes that are involved in somatic embryogenesis in Arabidopsis[J]. Plant Growth Regul, 2018, 85(2):243-256.DOI: 10.1007/s10725-018-0389-1.
[39]
GAO Y, CUI Y, ZHAO R R, et al. Cryo-treatment enhances the embryogenicity of mature somatic embryos via the lncRNA-miRNA-mRNA network in white spruce[J]. Int J Mol Sci, 2022, 23(3):1111.DOI: 10.3390/ijms23031111.
[40]
CASTANDER-OLARIETA A, PEREIRA C, SALES E, et al. Induction of Radiata pine somatic embryogenesis at high temperatures provokes a long-term decrease in DNA methylation/hydroxymethylation and differential expression of stress-related genes[J]. Plants, 2020, 9(12):1762.DOI: 10.3390/plants9121762.
[41]
PACHOTA K A, ORŁOWSKA R. Effect of copper and silver ions on sequence and DNA methylation changes in triticale regenerants gained via somatic embryogenesis[J]. J Appl Genet, 2022, 63(4):663-675.DOI: 10.1007/s13353-022-00717-9.
[42]
SHEMER O, LANDAU U, CANDELA H, et al. Competency for shoot regeneration from Arabidopsis root explants is regulated by DNA methylation[J]. Plant Sci, 2015, 238:251-261.DOI: 10.1016/j.plantsci.2015.06.015.
[43]
SHIBUKAWA T, YAZAWA K, KIKUCHI A, et al. Possible involvement of DNA methylation on expression regulation of carrot LEC1 gene in its 5'-upstream region[J]. Gene, 2009, 437(1/2):22-31.DOI: 10.1016/j.gene.2009.02.011.
[44]
DAI X H, WANG J, SONG Y G, et al. Cytosine methylation of the FWA promoter promotes direct in vitro shoot regeneration in Arabidopsis thaliana[J]. J Integr Plant Biol, 2021, 63(8):1491-1504.DOI: 10.1111/jipb.13156.
[45]
LIU X, ZHU K,& XIAO J. Recent advances in understanding of the epigenetic regulation of plant regeneration[J]. aBioTech, 2023, 4(1): 31-46.DOI:10.1007/s42994-022-00093-2.
[46]
SHIM S, LEE H G, SEO P J. MET1-dependent DNA methylation represses light signaling and influences plant regeneration in Arabidopsis[J]. Mol Cells, 2021, 44(10):746-757.DOI: 10.14348/molcells.2021.0160.
[47]
XU J, WANG X, CAO H, et al. Dynamic changes in methylome and transcriptome patterns in response to methyltransferase inhibitor 5-azacytidine treatment in citrus[J]. DNA Res, 2017, 24:509-522.DOI:10.1093/dnares/dsx021.
[48]
KARIM R, TAN Y S, SINGH P, et al. Expression and DNA methylation of SERK,BBM,LEC2 and WUS genes in in vitro cultures of Boesenbergia rotunda (L.) Mansf[J]. Physiol Mol Biol Plants, 2018, 24(5):741-751.DOI: 10.1007/s12298-018-0566-8.
[49]
VININ K, POMRANING K R, WILHELM L J, et al. Methylome reorganization during in vitro dedifferentiation and regeneration of Populus trichocarpa[J]. BMC plant biology, 2013, 13:1-15.DOI:10.1186/1471-2229-13-92.
[50]
CAO Q, FENG Y X, DAI X W, et al. Dynamic changes of DNA methylation during wild strawberry (Fragaria nilgerrensis) tissue culture[J]. Front Plant Sci, 2021, 12:765383.DOI: 10.3389/fpls.2021.765383.
[51]
LI J Y, WANG M J, LI Y J, et al. Multi-omics analyses reveal epigenomics basis for cotton somatic embryogenesis through successive regeneration acclimation process[J]. Plant Biotechnol J, 2019, 17(2):435-450.DOI: 10.1111/pbi.12988.
[52]
LAW J A, JACOBSEN S E. Establishing,maintaining and modifying DNA methylation patterns in plants and animals[J]. Nat Rev Genet, 2010, 11(3):204-220.DOI: 10.1038/nrg2719.
[53]
LI W, LIU H, CHENG Z J, et al. DNA methylation and histone modifications regulate de novo shoot regeneration in Arabidopsis by modulating WUSCHEL expression and auxin signaling[J]. PLoS Genet, 2011, 7(8):e1002243.DOI: 10.1371/journal.pgen.1002243.
[54]
LIU H, ZHANG H, DONG Y X, et al. DNA Methyltransferase 1-mediated shoot regeneration is regulated by cytokinin-induced cell cycle in Arabidopsis[J]. New Phytol, 2018, 217(1):219-232.DOI: 10.1111/nph.14814.
[55]
YAARI R, KATZ A, DOMB K, et al. RdDM-independent de novo and heterochromatin DNA methylation by plant CMT and DNMT3 orthologs[J]. Nat Commun, 2019, 10(1):1613.DOI: 10.1038/s41467-019-09496-0.
[56]
GAO Y, CHEN X Y, CUI Y, et al. Effects of medium supplements on somatic embryo maturation and DNA methylation in Pseudotsuga gaussenii Flous,a species under protection[J]. Forests, 2022, 13(2):288.DOI: 10.3390/f13020288.
[57]
ERDMANN R M, PICARD C L. RNA-directed DNA methylation[J]. PLoS Genet, 2020, 16(10):e1009034.DOI: 10.1371/journal.pgen.1009034.
[58]
JI L X, MATHIONI S M, JOHNSON S, et al. Genome-wide reinforcement of DNA methylation occurs during somatic embryogenesis in soybean[J]. Plant Cell, 2019, 31(10):2315-2331.DOI: 10.1105/tpc.19.00255.
[59]
GIRI C C, SHYAMKUMAR B, ANJANEYULU C. Progress in tissue culture, genetic transformation and applications of biotechnology to trees: an overview[J]. Trees, 2004, 18:115-135. DOI 10.1007/s00468-003-0287-6.
[60]
BARGHCHI M, ALDERSON P G. The control of shoot tip necrosis in Pistacia vera L. in vitro[J]. Plant growth regulation, 1996, 20:31-35.
[61]
GUTIERREZ-ARCELU, MARI, LAPPALATNEN T, et al. Passive and active DNA methylation and the interplay with genetic variation in gene regulation[J]. elife, 2013, 2: e00523.DOI:10.7554/eLife.00523.001.

Footnotes

PDF(6225 KB)

Accesses

Citation

Detail

Sections
Recommended
The full text is translated into English by AI, aiming to facilitate reading and comprehension. The core content is subject to the explanation in Chinese.

/