Effects of exogenous salicylic acid on growth and photosynthesis of Ginkgo biloba under NaCl stress

LUO Chunyan, GENG Hongkai, WANG Xiujun, LI Zihang, GUO Linfan, LI Qingwei

JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2024, Vol. 48 ›› Issue (6) : 91-101.

PDF(3392 KB)
PDF(3392 KB)
JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2024, Vol. 48 ›› Issue (6) : 91-101. DOI: 10.12302/j.issn.1000-2006.202302021

Effects of exogenous salicylic acid on growth and photosynthesis of Ginkgo biloba under NaCl stress

Author information +
History +

Abstract

【Objective】This study investigated the alleviation mechanism of exogenous salicylic acid (SA) on Ginkgo biloba under NaCl stress, with the aim of providing a theoretical basis for addressing the salt damage of G. biloba in saline environments. This could support the expansion of G. biloba cultivation and enhance the plant landscape in these areas.【Method】Thirteen treatment groups were established with NaCl concentrations of 50 (N1), 100 (N2), and 200 (N3) mmol/L, and SA concentrations of 0.02 (S1), 0.10 (S2), and 0.50 (S3) mmol/L, using four-year-old G. biloba as the test material. The groups included CK, N1, N1S1, N1S2, N1S3, N2, N2S1, N2S2, N2S3, N3, N3S1, N3S2, and N3S3, with five replicates per group. The experiments were conducted in the greenhouse of Beijing Forestry University (116° 35'E, 40° 01'N) over a period of 28 days. The average temperature in the greenhouse was approximately 27.5 °C, and the average humidity is about 65.9%. This study observed the phenological characteristics of G. biloba growth and measured various indicators, including leaf fresh weight, chlorophyll a (Chla) content, chlorophyll b (Chlb) content, total chlorophyll (total Chl) content, net photosynthetic rate (Pn), stomatal conductance (Gs), intercellular CO2 concentration (Ci), transpiration rate (Tr), maximal photochemical efficiency (Fv/Fm), photochemical quenching coefficient (qP), actual photochemical efficiency (Y(Ⅱ)), and electron transport rate (ETR). The optimal SA concentration for mitigating salt stress in G. biloba was determined through principal component analysis and affiliation function method analysis.【Result】(1) As the NaCl concentration increased and the stress duration extended, the branch tops and leaves of G. biloba exhibited varying degrees of yellowing, scorching, and abscission, with a significant reduction in leaf fresh weight compared to the control group. (2) Increasing NaCl concentration and prolonging stress durations decreased leaf fresh weight, Chla content, Chlb content, total Chl content, Pn, Gs, Ci, Tr, Fv/Fm, qP, Y(Ⅱ), and ETR in G. biloba. (3) The application of exogenous SA at appropriate concentrations alleviates the inhibitory effected of NaCl stress on the growth and photosynthetic characteristics of G. biloba. The N1S2, N2S2, and N3S2 treatment groups were the most effective in mitigating salt damage. (4) Principal component analysis indicated that the exogenous application of SA primarily enhanced salt tolerance by influencing eight indicators: leaf fresh weight, Chla content, Chlb content, total Chl content, Pn, Gs, Tr, and Fv/Fm. (5) Based on the principal component analysis and affiliation function method analysis, the mitigating effect of SA was ranked as follows: 0.10 mmol/L > 0.02 mmol/L > 0.50 mmol/L.【Conclusion】The SA at 0.02 and 0.10 mmol/L under NaCl stress is more effective in mitigating growth and photosynthesis in G. biloba, with 0.10 mmol/L SA showing the best mitigation effect and 0.50 mmol/L SA having a more limited effect. Growth indicators and photosynthetic properties are important reference indicators for assessing salt tolerance in plants. However, the plant responses to salt stress are complex, so this experiment can serve as one references, and further research at physiological, biochemical, and molecular levels is needed.

Key words

Ginkgo biloba / NaCl stress / exogenous SA / phenological characteristics / leaf fresh quality / photosynthesis

Cite this article

Download Citations
LUO Chunyan , GENG Hongkai , WANG Xiujun , et al . Effects of exogenous salicylic acid on growth and photosynthesis of Ginkgo biloba under NaCl stress[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2024, 48(6): 91-101 https://doi.org/10.12302/j.issn.1000-2006.202302021

References

[1]
MUNNS R. Genes and salt tolerance: bringing them together[J]. The New Phytol, 2005, 167(3): 645-663. DOI: 10.1111/j.1469-8137.2005.01487.x.
[2]
LIANG W J, MA X L, WAN P, et al. Plant salt-tolerance mechanism: a review[J]. Biochem Biophys Res Commun, 2018, 495(1): 286-291. DOI:10.1016/j.bbrc.2017.11.043.
[3]
毛庆莲, 王胜. 国内盐碱地治理趋势探究浅析[J]. 湖北农业科学, 2020, 59(S1): 302-306.
MAO Q L, WANG S. Brief analysis on the trend of improve saline alkali soil in China[J]. Hubei Agric Sci, 2020, 59(S1): 302-306. DOI:10.14088/j.cnki.issn0439-8114.2020.S1.085.
[4]
MAYER T, ROCHFORT Q, BORGMANN U, et al. Geochemistry and toxicity of sediment porewater in a salt-impacted urban stormwater detention pond[J]. Environ Pollut, 2008, 156(1): 143-151. DOI: 10.1016/j.envpol.2007.12.018.
[5]
JAYAKANNAN M, BOSE J, BABOURINA O, et al. Salicylic acid in plant salinity stress signalling and tolerance[J]. Plant Growth Regul, 2015, 76(1): 25-40. DOI:10.1007/s10725-015-0028-z.
[6]
甘红豪, 赵帅, 高明远, 等. 外源水杨酸对NaCl胁迫下白榆幼苗光合作用及离子分配的影响[J]. 西北植物学报, 2020, 40(3): 478-489.
GAN H H, ZHAO S, GAO M Y, et al. Effect of salicylic acid on photosynthesis and ion distribution of Ulmus pumila seedlings under NaCl stress[J]. Acta Bot Boreali-Occidentalia Sin, 2020, 40(3): 478-489. DOI:10.7606/j.issn.1000-4025.2020.03.0478.
[7]
逯亚玲. 外源水杨酸处理和NaCl胁迫对紫花苜蓿种子萌发及幼苗生长的影响[D]. 南京: 南京农业大学, 2018.
LU Y L. Effects of salicylic acid and NaCl on seed germination and seeding physiological of alfalfa[D]. Nanjing: Nanjing Agricultural University, 2018. DOI:10.27244/d.cnki.gnjnu.2018.001189.
[8]
杨凤军, 李天来, 宿越, 等. 外源水杨酸对NaCl胁迫下番茄幼苗光合特性的影响[J]. 中国蔬菜, 2012 (22): 35-40.
YANG F J, LI T L, SU Y, et al. Effects of salicylic acid on photosynthesis characteristics of tomato seedlings during NaCl stress[J]. China Veg, 2012 (22):35-40. DOI:10.19928/j.cnki.1000-6346.2012.22.006.
[9]
王立红, 张巨松, 李星星, 等. 外源水杨酸对盐胁迫下棉花幼苗光合作用的影响[J]. 核农学报, 2016, 30(9): 1864-1871.
WANG L H, ZHANG J S, LI X X, et al. Effects of exogenous salicylic acid on the photosynthesis of cotton seedlings under salt stress[J]. J Nucl Agric Sci, 2016, 30(9): 1864-1871. DOI:10.11869/j.issn.100-8551.2016.09.1864.
[10]
张志刚, 尚庆茂. 水杨酸、壳聚糖对盐胁迫下黄瓜叶片光合参数的调节作用[J]. 西北农业学报, 2010, 19(3): 174-178.
ZHANG Z G, SHANG Q M. Regulation of salicylic acid and chitosan on photosynthetic parameters of cucumber leaves under salt stress[J]. Acta Agric Boreali Occidentalis Sin, 2010, 19(3): 174-178. DOI:10.3969/j.issn.1004-1389.2010.03.037.
[11]
LI T T, HU Y Y, DU X H, et al. Salicylic acid alleviates the adverse effects of salt stress in Torreya grandis cv. merrillii seedlings by activating photosynthesis and enhancing antioxidant systems[J]. Plos One, 2014, 9(10):e209492. DOI:10.1371/journal.pone.0109492.
[12]
杨策. 融雪剂等环境因素对银杏叶斑病的影响[D]. 大连: 辽宁师范大学, 2015.
YANG C. Effects of deicing salt and other environmental factors on gingko leaf spot[D]. Dalian: Liaoning Normal University, 2015.
[13]
赵海燕. 银杏幼树耐盐生理机制的研究[D]. 北京: 北京林业大学, 2020.
ZHAO H Y. Physiological mechanism in salt tolerance of Ginkgo biloba L. seedlings[D]. Beijing: Beijing Forestry University, 2020. DOI: 10.26949/d.cnki.gblyu.2020.001482.
[14]
ZHAO H Y, LIANG H Y, CHU Y B, et al. Effects of salt stress on chlorophyll fluorescence and the antioxidant system in Ginkgo biloba L. seedlings[J]. Hortscience, 2019, 54(12): 2125-2133. DOI: 10.21273/HORTSCI14432-19.
[15]
XIN Y, WU Y Q, HAN X, et al. Overexpression of the Ginkgo biloba WD40 gene GbLWD1-like improves salt tolerance in transgenic populus[J]. Plant Sci, 2021(2): 313-320. DOI:10.1016/j.plantsci.2021.111092.
[16]
高俊凤. 植物生理学实验指导[M]. 北京: 高等教育出版社, 2006: 75-76.
GAO J F. Experimental guidance for plant physiology[M]. Beijing: Higher Education Press, 2006: 75-76.
[17]
李晓庆, 王星斗, 樊艳, 等. 盐胁迫对杜梨吸收根生长指标的影响[J]. 山西农业大学学报(自然科学版), 2021, 41(5): 62-67.
LI X Q, WANG X D, FAN Y, et al. Effects of salt stress on the growth index of absorbing roots of Pyrus betulifolia[J]. J Shanxi Agric Univ (Nat Sci Ed), 2021, 41(5): 62-67. DOI:10.13842/j.cnki.issn1671-8151.202105048.
[18]
芦治国, 华建峰, 殷云龙, 等. 盐胁迫下氮素形态对海滨木槿幼苗生长及生理特性的影响[J]. 南京林业大学学报(自然科学版), 2022, 46(3): 91-98.
LU Z G, HUA J F, YIN Y L, et al. Effects of nitrogen form on growth and physiological characteristics of Hibiscus hamabo under salt stress[J]. J Nanjing For Univ (Nat Sci Ed), 2022, 46(3): 91-98. DOI:10.12302/j.issn.1000-2006.202105010.
[19]
教忠意. 盐胁迫对苦楝育苗及生理特性的影响[D]. 南京: 南京林业大学, 2009.
JIAO Z Y. Effect of salt stress on raising seedling and physiological characteristics of Melia azedarace L.[D]. Nanjing: Nanjing Forestry University, 2009.
[20]
赵春旭. 水杨酸对高羊茅草坪草抗旱性的影响[D]. 兰州: 兰州大学, 2011.
ZHAO C X. The effects of salicylic acid (SA) on drought resistance of tall fescue (Festuca arundinacea)[D]. Lanzhou: Lanzhou University, 2011.
[21]
MAKINO A. Photosynthesis, grain yield, and nitrogen utilization in rice and wheat[J]. Plant Physiol, 2011, 155(1): 125-129. DOI:10.1104/pp.110.165076.
[22]
王伟华, 张希明, 闫海龙, 等. 盐处理对多枝柽柳光合作用和渗调物质的影响[J]. 干旱区研究, 2009, 26(4): 561-568.
WANG W H, ZHANG X M, YAN H L, et al. Effects of salt stress on photosynthesis and osmoregulation substances of Tamarix ramosissima Ledeb[J]. Arid Zone Res, 2009, 26(4): 561-568. DOI:10.13866/j.azr.2009.04.003.
[23]
李学孚, 倪智敏, 吴月燕, 等. 盐胁迫对‘鄞红’葡萄光合特性及叶片细胞结构的影响[J]. 生态学报, 2015, 35(13): 4436-4444.
LI X F, NI Z M, WU Y Y, et al. Effects of salt stress on photosynthetic characteristics and leaf cell structure of ‘Yinhong’ grape seedlings[J]. Acta Ecol Sin, 2015, 35(13): 4436-4444. DOI:10.5846/stxb201409141821.
[24]
刘兵, 贾旭梅, 朱祖雷, 等. 盐碱胁迫对垂丝海棠光合作用及渗透调节物质的影响[J]. 西北植物学报, 2019, 39(9): 1618-1626.
LIU B, JIA X M, ZHU Z L, et al. Effect of saline-alkali on photosynthesis and osmotic regulation substances of Malus halliana Koehne[J]. Acta Bot Boreali-Occidentalia Sin, 2019, 39(9): 1618-1626. DOI:10.7606/j.issn.1000-4025.2019.09.1618.
[25]
VELOSOLLDA, DE LIMA G S, DA SILVA AAR, et al. Attenuation of salt stress on the physiology and production of bell peppers by treatment with salicylic acid[J]. Semina-cienc Agrar, 2021, 42(5): 2751-2768. DOI:10.5433/1679-0359.2021v42n5p2751.
[26]
王旭明, 赵夏夏, 周鸿凯, 等. NaCl胁迫对不同耐盐性水稻某些生理特性和光合特性的影响[J]. 热带作物学报, 2019, 40(5): 882-890.
WANG X M, ZHAO X X, ZHOU H K, et al. Effects of NaCl stress on some physiological and biochemical indices and photosynthetic physiology characteristics of rice cultivars with different salt tolerance[J]. Chin J Trop crops, 2019, 40(5): 882-890. DOI:10.3969/j.issn.1000-2561.2019.05.008.
[27]
ALINIAEIFARD S, HAJILOU J, TABATABAEI S J. Photosynthetic and growth responses of olive to proline and salicylic acid under salinity condition[J]. Not Bot Horti Agrobo, 2016, 44(2):579-585. DOI:10.15835/nbha44210413.
[28]
XUE F L, LIU W L, CAO H L, et al. Stomatal conductance of tomato leaves is regulated by both abscisic acid and leaf water potential under combined water and salt stress[J]. Physiol Plant, 2021, 172(4): 2070-2078. DOI:10.1111/ppl.13441.
[29]
蔡琪琪, 王堽, 董寅壮, 等. 不同中性盐胁迫对甜菜幼苗光合作用和抗氧化酶系统的影响[J]. 作物杂志, 2022 (1): 130-136.
CAI Q Q, WANG G, DONG Y Z, et al. Effects of different neutral salt stress on photosynthesis and antioxidant enzyme system of sugar beet seedlings[J]. Crops, 2022(1): 130-136. DOI:10.16035/j.issn.1001-7283.2022.01.019.
[30]
王立红, 李星星, 孙影影, 等. NaCl胁迫下外源水杨酸对棉花幼苗叶片光合特性的影响[J]. 干旱区研究, 2017, 34(3): 655-662.
WANG L H, LI X X, SUN Y Y, et al. Effects of exogenous salicylic acid on photosynthetic characteristics of cotton seedlings leaves under salt stress[J]. Arid Zone Res, 2017, 34(3): 655-662. DOI:10.13866/j.azr.2017.03.23.
[31]
NAZAR R, IQBAL N, SYEEDS S, et al. Salicylic acid alleviates decreases in photosynthesis under salt stress by enhancing nitrogen and sulfur assimilation and antioxidant metabolism differentially in two mungbean cultivars[J]. Journal of Plant Physiol, 2011, 168(8): 807-815. DOI:10.1016/j.jplph.2010.11.001.
[32]
LIU S, DONG Y J, XU L L, et al. Effects of foliar applications of nitric oxide and salicylic acid on salt-induced changes in photosynthesis and antioxidative metabolism of cotton seedlings[J]. Plant Growth Regul, 2014, 73(1): 67-78. DOI:10.1007/s10725-013-9868-6.
[33]
董慧, 段小春, 常智慧. 外源水杨酸对多年生黑麦草耐盐性的影响[J]. 北京林业大学学报, 2015, 37(2): 128-135.
DONG H, DUAN X C, CHANG Z H. Effect of exogenous salicylic acid on salt tolerance in perennial ryegrass[J]. Journal of Beijing For Univ, 2015, 37(2): 128-135.DOI:10.13332/j.cnki.jbfu.2015.02.001.
[34]
刘莉娜, 张卫强, 黄芳芳, 等. 盐胁迫对银叶树幼苗光合特性与叶绿素荧光参数的影响[J]. 森林与环境学报, 2019, 39(6): 601-607.
LIU L N, ZHANG W Q, HUANG F F, et al. Effects of NaCl stress on the photosynthesis and cholorophyll fluorescence of Heritiera littoralis seedlings[J]. J For and Environ, 2019, 39(6): 601-607. DOI:10.13324/j.cnki.jfcf.2019.06.006.
[35]
张露, 黄巧玥, 程聪, 等. 大豆GmCLC-d1/d2基因参与盐胁迫适应过程的生理功能[J]. 南京农业大学学报, 2023, 46(6):1084-1095.
ZHANG L, HUANG Q Y, CHENG C, et al. Physiological function of soybean GmCLC-d1/d2 gene involved in salt stress adaptation[J]. J Nanjing Agric Univ, 2023, 46(6):1084-1095.DOI: 10.7685/jnau.202210018.
[36]
谢寅峰, 张千千, 刘伟龙, 等. 外源水杨酸对高氯酸盐胁迫下水花生叶绿素荧光特性的影响[J]. 环境科学学报, 2010, 30(7): 1457-1465.
XIE Y F, ZHANG Q Q, LIU W L, et al. Effects of exogenous salicylic acid on the chlorophyll fluorescence characteristics of Alternanthera philoxeroides under perchlorate stress[J]. Acta Sci Circumstantiae, 2010, 30(7): 1457-1465. DOI:10.13671/j.hjkxxb.2010.07.017.
[37]
于平, 乔飞. 渗透胁迫及信号处理对海南粗榧叶绿素荧光特性的影响[J]. 基因组学与应用生物学, 2021, 40(2): 809-816.
YU P, QIAO F. Effects of osmotic stress and signal substance treatment on chlorophyll fluorescence characteristics of Cephalotaxus hainanensis[J]. Genom Appl Biol, 2021, 40(2): 809-816. DOI:10.13417/j.gab.040.000809.
PDF(3392 KB)

Accesses

Citation

Detail

Sections
Recommended
The full text is translated into English by AI, aiming to facilitate reading and comprehension. The core content is subject to the explanation in Chinese.

/