Nutritional quality analysis of Chimonobambusa utilis bamboo shoots at different heights and parts

QIN Min, WANG Xiaoqin, BIAN Lili, WU Hongyu, YAO Wenjing, LIN Shuyan

JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2024, Vol. 48 ›› Issue (6) : 79-90.

PDF(1742 KB)
PDF(1742 KB)
JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2024, Vol. 48 ›› Issue (6) : 79-90. DOI: 10.12302/j.issn.1000-2006.202303001

Nutritional quality analysis of Chimonobambusa utilis bamboo shoots at different heights and parts

Author information +
History +

Abstract

【Objective】The nutritional quality of Chimonobambusa utilis bamboo shoots at different heights ((0,10], (10,20],(20,30],(30,40] cm) and parts (upper, middle, lower) were analyzed. Understanding the nutritional variation rules and evaluating the nutritional value of C. utilis shoots at different heights and parts will provide a reference for the product development of bamboo shoots.【Method】The content of each nutrient component was determined by liquid chromatography. Principal component analysis and the subordinate function method were used to comprehensively evaluate the nutritional quality of C. utilis bamboo shoots at different heights and parts.【Result】There were differences in the nutritional composition of bamboo shoots at different heights in C. utilis. With increasing shoot height, reducing sugar, fructose, and glucose in the bamboo shoots gradually increased, whereas the contents of contents of water, crude protein, sucrose, and total acid decreased. The total sugar and flavonoid contents showed a trend of initially increasing and then decreasing. Vitamin C contents were stable. The contents of total amino acids and essential amino acids at 0-10 cm were significantly higher than those at the other three heights. In addition, there were significant differences in the nutritional composition of different parts of the bamboo shoots. From the lower part to the upper part of the shoots, the content of ash, tannins, total sugar, reducing sugar, fructose and glucose gradually decreased, while the content of water, crude protein, flavonoids, total acid and mineral elements generally increased. The contents of dietary fiber and sucrose were stable. Vitamin C content was the highest in the lower part of bamboo shoots. In the upper part of the bamboo shoots, the content of crude fat was the lowest and the content of total amino acids and essential amino acids in the upper part of bamboo shoots was significantly higher than that in the middle and lower parts.【Conclusion】The comprehensive nutritional quality of C. utilis bamboo shoots gradually decreased with increasing emergence height and decreasing bamboo shoot position.

Key words

Chimonobambusa utilis / bamboo shoot height / bamboo shoot different parts / nutritional quality

Cite this article

Download Citations
QIN Min , WANG Xiaoqin , BIAN Lili , et al . Nutritional quality analysis of Chimonobambusa utilis bamboo shoots at different heights and parts[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2024, 48(6): 79-90 https://doi.org/10.12302/j.issn.1000-2006.202303001

References

[1]
伍虹雨, 林树燕, 丁雨龙, 等. 金佛山方竹果实发育特征及淀粉粒动态变化[J]. 南京林业大学学报(自然科学版), 2023, 47 (6):150-158.
WU H Y, LIN S Y, DING Y L, et al. Study on development characteristics and dynamic changes of starch granules in the fruit of Chimonobambusa utilis[J]. J Nanjing For Univ (Nat Sci Ed), 2023, 47 (6):150-158.DOI:10.12302/j.issn.1000-2006.202206042.
[2]
杨金来, 高贵宾, 张甫生, 等. 5种彩色笋壳的金佛山方竹笋品质分析与评价[J]. 食品科学, 2022, 43(6):303-308.
YANG J L, GAO G B, ZHANG F S, et al. Quality analysis and evaluation of five cultivars of Chimonobambusa quadrangularis shoots with color shell from Jinfoshan Mountain[J]. Food Sci, 2022, 43(6):303-308.DOI: 10.7506/spkx1002-6630-20210414-199.
[3]
任春春, 贾玉龙, 娄义龙, 等. 贵州金佛山方竹笋营养及功能成分剖析[J]. 食品与发酵工业, 2021, 47(10):214-221.
REN C C, JIA Y L, LOU Y L, et al. Analysis of nutritional and functional components of bamboo shoots in Chimonobambusa utilis,Guizhou[J]. Food Ferment Ind, 2021, 47(10):214-221.DOI: 10.13995/j.cnki.11-1802/ts.026330.
[4]
丁波, 殷建强, 刘世农, 等. 金佛山方竹研究进展及其开发利用[J]. 贵州农业科学, 2011, 39(10):175-178.
DING B, YIN J Q, LIU S N, et al. Research progress of Chimonobombusa utilis and its development and utilization[J]. Guizhou Agric Sci, 2011, 39(10):175-178.DOI: 10.3969/j.issn.1001-3601.2011.10.049.
[5]
时俊帅, 谷瑞, 陈双林, 等. 不同海拔的高节竹笋蛋白质营养品质差异分析[J]. 江西农业大学学报, 2019, 41(2):308-315.
SHI J S, GU R, CHEN S L, et al. The effect of altitude on the protein nutritional value of Phyllostachys prominens bamboo shoots[J]. Acta Agric Univ Jiangxiensis, 2019, 41(2):308-315.DOI: 10.13836/j.jjau.2019037.
[6]
伍明理, 代朝霞, 刘艳江, 等. 贵州11种竹笋营养成分分析及品质比较[J/OL]. 分子植物育种(2022-05-31).
WU M L, DAI C X, LIU Y J, et al. Analysis of nutritional components and quality comparison of 11 edible bamboo shoots in Guizhou Province[J/OL]. Molecular Plant Breeding(2022-05-31). https://kns.cnki.net/kcms/detail/46.1068.s.20220530.1433.006.html.
[7]
张佳佳, 白瑞华, 丁兴萃. 两种主要食用竹笋的营养及安全品质比较[J]. 食品研究与开发, 2021, 42(8):18-23.
ZHANG J J, BAI R H, DING X C. Comparison of nutrition and safety of two main edible bamboo shoots[J]. Food Res Dev, 2021, 42(8):18-23.DOI: 10.12161/j.issn.1005-6521.2021.08.004.
[8]
沈学桂, 申展, 杨邦国, 等. 覆盖雷竹林土壤高温胁迫对竹笋萌发和笋体大小的影响[J]. 江西农业大学学报, 2020, 42(5):1013-1021.
SHEN X G, SHEN Z, YANG B G, et al. Effects of high soil temperature stress on bamboo shoot germination and shoot size in covered Phyllostachys violascens praecox forest[J]. Acta Agric Univ Jiangxiensis, 2020, 42(5):1013-1021.DOI: 10.13836/j.jjau.2020113.
[9]
胡文杰, 庞宏东, 胡兴宜, 等. 竹林密度和施肥种类对幕阜山区毛竹笋产量和品质及土壤理化性质的影响[J]. 林业科学, 2021, 57(12):32-42.
HU W J, PANG H D, HU X Y, et al. Effects of bamboo forest density and fertilizer types on the yield and quality of Phyllostachys edulis bamboo shoots and soil physicochemical properties in Mufu Mountain area[J]. Sci Silvae Sin, 2021, 57(12):32-42.DOI: 10.11707/j.1001-7488.20211204.
[10]
胡德胜, 陈丽华, 胡俊靖, 等. 施肥对覆土栽培高节竹笋产量和品质的影响[J]. 浙江林业科技, 2021, 41(4):50-55.
HU D S, CHEN L H, HU J J, et al. Effect of fertilization on shoot yield and quality of Phyllostachys prominens under soil covered cultivation[J]. J Zhejiang For Sci Technol, 2021, 41(4):50-55.DOI: 10.3969/j.issn.1001-3776.2021.04.008.
[11]
郭子武, 江志标, 陈双林, 等. 覆土栽培对高节竹笋品质的影响[J]. 广西植物, 2015, 35(4):515-519.
GUO Z W, JIANG Z B, CHEN S L, et al. Influence of soil covered cultivation on shoot quality of Phyllostachys prominens[J]. Guihaia, 2015, 35(4):515-519.DOI: 10.11931/guihaia.gxzw201407042.
[12]
董春凤, 赵一鹤. 储藏时间和温度对甜龙竹笋采后品质的影响[J]. 竹子学报, 2021, 40(4):80-86.
DONG C F, ZHAO Y H. Effects of storage time and temperature on postharvest quality of Dendrocalamus brandisii shoots[J]. J Bamboo Res, 2021, 40(4):80-86.DOI: 10.12390/jbr2022040.
[13]
杨奕, 董文渊, 邱月群, 等. 筇竹笋生长过程中营养成分的变化[J]. 东北林业大学学报, 2015, 43(1):80-82,87.
YANG Y, DONG W Y, QIU Y Q, et al. Transformation of nutritional compositions in Chimonobambusa tumidissinoda shoots during growth process[J]. J Northeast For Univ, 2015, 43(1):80-82,87.DOI: 10.13759/j.cnki.dlxb.2015.01.004.
[14]
NIRMALA C, DAVID E, SHARMA M L. Changes in nutrient components during ageing of emerging juvenile bamboo shoots[J]. Int J Food Sci Nutr, 2007, 58(8):612-618.DOI: 10.1080/09637480701359529.
[15]
李荣, 刀定伟, 向明欢, 等. 版纳甜龙竹笋不同部位营养特征分析[J]. 林业科技开发, 2010, 24(4):76-78.
LI R, DAO D W, XIANG M H, et al. Analysis on nutrient quantity in different parts of Dendrocalamus hamiltonii shoots[J]. China For Sci Technol, 2010, 24(4):76-78.DOI: 10.3969/j.issn.1000-8101.2010.04.021.
[16]
莫润宏, 汤富彬, 丁明, 等. 雷竹笋不同部位的游离氨基酸含量[J]. 浙江农业科学, 2012, 53(7):961-963.
MO R H, TANG F B, DING M, et al. Contents of free amino acids in different parts of Phyllostachys praecox shoots[J]. J Zhejiang Agric Sci, 2012, 53(7):961-963.DOI: 10.16178/j.issn.0528-9017.2012.07.039.
[17]
冯会丽, 吴正保, 史彦江, 等. 基于因子分析的灰枣优良无性系果实品质评价[J]. 食品科学, 2016, 37(9):77-81.
FENG H L, WU Z B, SHI Y J, et al. Fruit quality evaluation of superior clones of Zizyphus jujuba cv.Huizao based on factor analysis[J]. Food Sci, 2016, 37(9):77-81.DOI: 10.7506/spkx1002-6630-201609015.
[18]
杨蕾, 洪林, 刘兆俊, 等. 六个金柑品种果实品质与营养综合评价[J]. 浙江农业学报, 2022, 34(3):534-547.
YANG L, HONG L, LIU Z J, et al. Comprehensive evaluation of fruit quality and nutrition of six kumquat varieties[J]. Acta Agric Zhejiangensis, 2022, 34(3):534-547.DOI: 10.3969/j.issn.1004-1524.2022.03.14.
[19]
詹卉, 邓琳, 何文志, 等. 不同种源龙竹竹笋营养价值分析[J]. 西南林业大学学报(自然科学), 2017, 37(3):204-209.
ZHAN H, DENG L, HE W Z, et al. Nutrient analysis of Dendrocalamus giganteus shoots from different provenances[J]. J Southwest For Univ (Nat Sci), 2017, 37(3):204-209.DOI: 10.11929/j.issn.2095-1914.2017.03.033.
[20]
章志远, 丁兴萃, 崔逢欣, 等. 感官评定方法确定麻竹笋苦涩味物质成分及与口感的关系[J]. 食品科学, 2017, 38(5):167-173.
ZHANG Z Y, DING X C, CUI F X, et al. Identification of bitter and astringent components in ma bamboo shoots and their relationship with taste by sensory evaluation[J]. Food Sci, 2017, 38(5):167-173.DOI: 10.7506/spkx1002-6630-201705027.
[21]
李雪蕾, 丁兴萃, 张闪闪, 等. 不同光强下麻竹笋不同部位苦涩味物质含量的变化[J]. 南京林业大学学报(自然科学版), 2015, 39(3):161-166.
LI X L, DING X C, ZHANG S S, et al. The distributions of bitter and astringent taste compounds in the bamboo shoot of Dendrocalamus latiflorus under different light intensities[J]. J Nanjing For Univ (Nat Sci Ed), 2015, 39(3):161-166.DOI: 10.3969/j.issn.1000-2006.2015.03.029.
[22]
陈松河, 马丽娟, 丁振华, 等. 5种牡竹属笋用竹竹笋营养成分之比较[J]. 竹子学报, 2018, 37(4):4-8,19.
CHEN S H, MA L J, DING Z H, et al. Comparison of nutritional components in bamboo shoots of five Dendrocalamus species[J]. J Bamboo Res, 2018, 37(4):4-8,19.DOI: 10.19560/j.cnki.issn1000-6567.2018.04.002.
[23]
徐森, 谷瑞, 陈双林, 等. 竹子箨叶形态性状的种间差异及其与竹笋食味品质指标的关系[J]. 生态学杂志, 2022, 41(2):270-277.
XU S, GU R, CHEN S L, et al. Interspecific differences in morphological traits of sheath leaves and their relationships with taste quality indices of bamboo shoots[J]. Chin J Ecol, 2022, 41(2):270-277.DOI: 10.13292/j.1000-4890.202202.013.
[24]
WU X Y, HAN W, YANG Z Q, et al. The difference in temperature between day and night affects the strawberry soluble sugar content by influencing the photosynthesis,respiration and sucrose phosphatase synthase[J]. Hort Sci (Prague), 2021, 48(4):174-182.DOI: 10.17221/169/2020-hortsci.
[25]
REN R H, WAN Z W, CHEN H W, et al. The effect of inter-varietal variation in sugar hydrolysis and transport on sugar content and photosynthesis in Vitis vinifera L.leaves[J]. Plant Physiol Biochem, 2022, 189:1-13.DOI: 10.1016/j.plaphy.2022.07.031.
[26]
BRAUN D M. Phloem loading and unloading of sucrose:what a long,strange trip from source to sink[J]. Annu Rev Plant Biol, 2022,73:553-584.DOI: 10.1146/annurev-arplant-070721-083240.
[27]
丁雨龙, 林树燕, 魏强, 等. 竹子发育生物学研究进展[J]. 南京林业大学学报(自然科学版), 2022, 46(6):23-40.
DING Y L, LIN S Y, WEI Q, et al. Advances in developmental biology of bamboos[J]. J Nanjing For Univ (Nat Sci Ed), 2022, 46(6):23-40.DOI: 10.12302/j.issn.1000-2006.202208067.
[28]
徐功勋, 崔晓文, 张新昊, 等. 桃结果枝压力束缚对树体矿质营养和碳同化产物分配的影响[J]. 沈阳农业大学学报, 2021, 52(1):90-95.
XU G X, CUI X W, ZHANG X H, et al. Effects of pressure treatment on the distribution of mineral nutrition and carbon assimilation products on peach fruiting branches[J]. J Shenyang Agric Univ, 2021, 52(1):90-95.DOI: 10.3969/j.issn.1000-1700.2021.01.012.
[29]
甘小洪, 唐翠彬, 温中斌, 等. 寿竹笋的营养成分研究[J]. 天然产物研究与开发, 2013, 25(4):494-499.
GAN X H, TANG C B, WEN Z B, et al. Nutrient components of Phyllostachys bambusoides f. shouzhu shoot[J]. Nat Prod Res Dev, 2013, 25(4):494-499.DOI: 10.16333/j.1001-6880.2013.04.013.
[30]
朱潇, 刘艳江, 伍明理, 等. 雷山方竹笋营养成分对比分析[J]. 经济林研究, 2022, 40(3):273-280.
ZHU X, LIU Y J, WU M L, et al. Comparative analysis of nutrients from bamboo shoots of Chimonobambusa leishanensis[J]. Non Wood For Res, 2022, 40(3):273-280.DOI: 10.14067/j.cnki.1003-8981.2022.03.030.
[31]
朱勇, 罗朝光. 绿竹笋营养成分的测定与分析[J]. 经济林研究, 2012, 30(3):103-105.
ZHU Y, LUO C G. Analysis of nutrient components in Dendrocalamopsis oldhami bamboo shoot[J]. Nonwood For Res, 2012, 30(3):103-105.DOI: 10.14067/j.cnki.1003-8981.2012.03.016.
[32]
孙建, 周红英, 乐美旺, 等. 芝麻种子萌发动态及其代谢生理变化研究[J]. 中国农业科技导报, 2020, 22(8):41-48.
SUN J, ZHOU H Y, LE M W, et al. Germination dynamics and physiological changes of metabolism in sesame seed[J]. J Agric Sci Technol, 2020, 22(8):41-48.DOI: 10.13304/j.nykjdb.2019.0452.
[33]
魏利斌, 苏小雨, 高桐梅, 等. 芝麻芽菜的氨基酸动态变化及营养风味评价[J]. 食品研究与开发, 2022, 43(11):63-70.
WEI L B, SU X Y, GAO T M, et al. Dynamic changes of amino acids and nutrition and taste evaluation of sesame sprouts[J]. Food Res Dev, 2022, 43(11):63-70.DOI: 10.12161/j.issn.1005-6521.2022.11.009.
[34]
Energy and protein requirements: report of a joint FAO/WHO/UNU expert consaltation[J]. World Health Organ Tech Rep Ser, 1985,724:1-206.
[35]
陈中爱, 耿阳阳, 黄珊, 等. 不同品种竹笋营养品质分析与综合评价[J]. 食品工业科技, 2023, 44(3):262-268.
CHEN Z A, GENG Y Y, HUANG S, et al. Analysis and comprehensive evaluation of nutritional quality of bamboo shoots from different cultivars[J]. Sci Technol Food Ind, 2023, 44(3):262-268.DOI: 10.13386/j.issn1002-0306.2022030236.
[36]
ZHANG M J, MA Y R, CHE X Y, et al. Comparative analysis of nutrient composition of Caulerpa lentillifera from different regions[J]. J Ocean Univ China, 2020, 19(2):439-445.DOI: 10.1007/s11802-020-4222-x.
[37]
VAN SADELHOFF J H J, WIERTSEMA S P, GARSSEN J, et al. Free amino acids in human milk:a potential role for glutamine and glutamate in the protection against neonatal allergies and infections[J]. Front Immunol, 2020,11:1007.DOI: 10.3389/fimmu.2020.01007.
[38]
郇思琪, 刘登勇, 王笑丹, 等. 食品中呈鲜味物质研究进展[J]. 食品工业科技, 2020, 41(21):333-339.
HUAN S Q, LIU D Y, WANG X D, et al. Research advances on umami substances in food[J]. Sci Technol Food Ind, 2020, 41(21):333-339.DOI: 10.13386/j.issn1002-0306.2020020157.
[39]
孙小青. 雷竹笋主要有效成分分析及其活性研究[D]. 长沙: 中南林业科技大学, 2014.
SUN X Q. The main active ingredient analysis and activity of Phyllostachys pracecox[D]. Changsha: Central South University of Forestry & Technology, 2014.
[40]
程路芸, 温星, 马丹丹, 等. 毛竹快速生长过程中碳水化合物的时空变化[J]. 浙江农林大学学报, 2017, 34(2):261-267.
CHENG L Y, WEN X, MA D D, et al. Spatial and temporal change of carbohydrates during rapid growth processes of Phyllostachys edulis[J]. J Zhejiang A F Univ, 2017, 34(2):261-267.DOI: 10.11833/j.issn.2095-0756.2017.02.009.
[41]
刘毅, 邓琳, 李鹏程, 等. 竹子快速生长过程中糖分代谢与运输机制研究[J]. 世界竹藤通讯, 2022, 20(4):104-108.
LIU Y, DENG L, LI P C, et al. Study on sugar metabolism and transport mechanism during the rapid growth of bamboo[J]. World Bamboo Rattan, 2022, 20(4):104-108.DOI: 10.12168/sjzttx.2022.04.022.
[42]
WANG S G, PEI J L, LI J, et al. Sucrose and starch metabolism during Fargesia yunnanensis shoot growth[J]. Physiol Plant, 2020, 168(1):188-204.DOI: 10.1111/ppl.12934.
[43]
党丽敏, 陈东晖, 尹爱武. 苦竹竹笋营养成分分析[J]. 广州化工, 2017, 45(14):133-134,152.
DANG L M, CHEN D H, YIN A W. Analysis of nutritional components in bamboo shoots of Pleioblastus amarus[J]. Guangzhou Chem Ind, 2017, 45(14):133-134,152.DOI: 10.3969/j.issn.1001-9677.2017.14.046.
[44]
王国玉, 马师, 代朝霞. 毛金竹竹笋营养成分分析[J]. 现代农业科技, 2014(24):282,284.
WANG G Y, MA S, DAI Z X. Analysis on nutrients from bamboo shoots of Phyllostachys nigra var. henonis[J]. Mod Agric Sci Technol, 2014(24):282,284.DOI: 10.3969/j.issn.1007-5739.2014.24.161.
[45]
WOLF M B. Whole body acid-base and fluid-electrolyte balance:a mathematical model[J]. Am J Physiol Renal Physiol, 2013, 305(8):1118-1131.DOI: 10.1152/ajprenal.00195.2013.
[46]
WAIKHOM S D, LOUIS B, SHARMA C K, et al. Grappling the high altitude for safe edible bamboo shoots with rich nutritional attributes and escaping cyanogenic toxicity[J]. Biomed Res Int, 2013,2013:289285.DOI: 10.1155/2013/289285.
[47]
余旋. 四川核桃主产区根际解磷细菌研究[D]. 雅安: 四川农业大学, 2011.
YU X. A study on phosphate-solubilizing bacteria of rhizosphere soil in walnut plant grown in Sichuan Province[D]. Yaan: Sichuan Agricultural University, 2011.
[48]
白祖云, 朱培英, 张高琦, 等. 筇竹笋采笋规格研究[J]. 安徽农业科学, 2021, 49(7):124-125,135.
BAI Z Y, ZHU P Y, ZHANG G Q, et al. Study on harvesting specifications of Qiongzhuea tumidissinoda shoots[J]. J Anhui Agric Sci, 2021, 49(7):124-125,135.DOI: 10.3969/j.issn.0517-6611.2021.07.035.
[49]
蒋茜, 刘芳芳, 凡彩凤, 等. 竹笋加工及副产物利用研究进展[J]. 食品与发酵科技, 2021, 57(2):141-145.
JIANG X, LIU F F, FAN C F, et al. Research progress in bamboo shoot processing and its comprehensive utilization[J]. Food Ferment Sci Technol, 2021, 57(2):141-145.DOI: 10.3969/j.issn.1674-506X.2021.02-022.
[50]
TANLEQUE-ALBERTO F, JUAN-BORRÁS M, ESCRICHE I. Antioxidant characteristics of honey from Mozambique based on specific flavonoids and phenolic acid compounds[J]. J Food Compos Anal, 2020,86:103377.DOI: 10.1016/j.jfca.2019.103377.
PDF(1742 KB)

Accesses

Citation

Detail

Sections
Recommended
The full text is translated into English by AI, aiming to facilitate reading and comprehension. The core content is subject to the explanation in Chinese.

/