Effects of drought on nitrogen uptake and distribution in Camellia oleifera root under nitrogen addition

JIANG Xiaozeng, ZHU Yan, ZHOU Hengwei, HUANG Xingzhao, FU Longlong, WAN Fangfang

JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2025, Vol. 49 ›› Issue (1) : 95-102.

PDF(1626 KB)
PDF(1626 KB)
JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2025, Vol. 49 ›› Issue (1) : 95-102. DOI: 10.12302/j.issn.1000-2006.202303015

Effects of drought on nitrogen uptake and distribution in Camellia oleifera root under nitrogen addition

Author information +
History +

Abstract

【Objective】This study investigates the growth response and nutrient utilization of the Camellia oleifera root system across different root orders under drought and nitrogen application. It aims to analyze how water and nitrogen affect root growth, nitrogen uptake, distribution and utilization, and to provide theoretical support for understanding the relationship between plant root architecture and nutrient strategies under climate warming. 【Method】 Two-year-old C. oleifera ‘Changlin 53’ trees were used. A pot experiment with 15N isotope tracing technology was conducted, setting two drought levels: normal irrigation (soil moisture content 75% ± 5%) and drought (soil moisture content 30%±5%). Two nitrogen application levels were used: no nitrogen and 15N-labeled ammonium nitrate (2.88 g/plant). After 75 days of drought treatment, the biomass, total nitrogen content, percentage of nitrogen from fertilizer (Ndff), and nitrogen use efficiency of roots of different diameter classes of C. oleifolia seedlings were measured. 【Result】 Under drought stress, there was a negative correlation between biomass and nitrogen content in grade 1-3, grade 5, and grade 6 roots, while a positive correlation was observed in grade 4 roots. Drought significantly affected 15N content and Ndff in all root diameter classes (P < 0.05). Drought inhibited 15N accumulation in all root diameter classes, with Ndff in grades 1-3 being most affected. Drought increased nitrogen distribution in roots, especially in grade 5 roots, which saw a 93.10% increase. However, the nitrogen use efficiency was inhibited to varying degrees across different root diameter classes. 【Conclusion】Nitrogen application increased root biomass and nitrogen allocation to coarse roots under drought but reduced fine root biomass and nitrogen accumulation. Drought significantly impacted the absorption, utilization, and distribution of fertilizer nitrogen in roots of all levels, enhancing nitrogen distribution, particularly in roots above grade 5, but inhibiting 15N absorption and utilization in roots of grades 1-4.

Key words

Camellia oleifera / nitrogenous addition / drought stress / root order / nitrogen fertilizer utilization

Cite this article

Download Citations
JIANG Xiaozeng , ZHU Yan , ZHOU Hengwei , et al . Effects of drought on nitrogen uptake and distribution in Camellia oleifera root under nitrogen addition[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2025, 49(1): 95-102 https://doi.org/10.12302/j.issn.1000-2006.202303015

References

[1]
SINGH V P, PRASAD S M, MUNNÉ-BOSCH S, et al. Editorial:phytohormones and the regulation of stress tolerance in plants:current status and future directions[J]. Front Plant Sci, 2017, 8:1871.DOI: 10.3389/fpls.2017.01871.
[2]
IPCC. Climate change 2022:mitigation of climate change[M]. Cambridge: Cambridge University Press, 2022.
[3]
董斌, 洪文泓, 黄永芳, 等. 广西4个油茶品种苗期对干旱胁迫的生理响应[J]. 中南林业科技大学学报, 2018, 38(2):1-8.
DONG B, HONG W H, HUANG Y F, et al. Physiological responses of four Camellia oleifera clones of Guangxi Province in seeding stage under drought stress[J]. J Cent South Univ For Technol, 2018, 38(2):1-8.DOI:10.14067/j.cnki.1673-923x.2018.02.001.
[4]
LIANG B W, MA C Q, ZHANG Z J, et al. Long-term exogenous application of melatonin improves nutrient uptake fluxes in apple plants under moderate drought stress[J]. Environ Exp Bot, 2018, 155:650-661.DOI: 10.1016/j.envexpbot.2018.08.016.
[5]
GEßLER A, JUNG K, GASCHE R, et al. Climate and forest management influence nitrogen balance of European beech forests:microbial N transformations and inorganic N net uptake capacity of mycorrhizal roots[J]. Eur J For Res, 2005, 124(2):95-111.DOI: 10.1007/s10342-005-0055-9.
[6]
ZHANG C X, MENG S, LI M J, et al. Transcriptomic insight into nitrogen uptake and metabolism of Populus simonii in response to drought and low nitrogen stresses[J]. Tree Physiol, 2018, 38(11):1672-1684.DOI: 10.1093/treephys/tpy085.
[7]
FINZI A C, NORBY R J, CALFAPIETRA C, et al. Increases in nitrogen uptake rather than nitrogen-use efficiency support higher rates of temperate forest productivity under elevated CO2[J]. Proc Natl Acad Sci USA, 2007, 104(35):14014-14019.DOI: 10.1073/pnas.0706518104.
[8]
ZHANG C X, MENG S, LI Y M, et al. Nitrogen uptake and allocation in Populus simonii in different seasons supplied with isotopically labeled ammonium or nitrate[J]. Trees, 2016, 30(6):2011-2018.DOI: 10.1007/s00468-016-1428-z.
[9]
田丽华. 氮对作物生长发育的影响及其施肥方法[J]. 河北农业科技, 2008(15):40.
TIAN L H. Effect of nitrogen on crop growth and development and its fertilization method[J]. Hebei Agric Sci Technol, 2008(15):40.
[10]
XIA G M, WANG Y J, HU J Q, et al. Effects of supplemental irrigation on water and nitrogen use,yield,and kernel quality of peanut under nitrogen-supplied conditions[J]. Agric Water Manag, 2021, 243: 106518.DOI: 10.1016/j.agwat.2020.106518.
[11]
FOTELLI M N, RENNENBERG H, GEΒLER A. Effects of drought on the competitive interference of an early successional species (Rubus fruticosus) on Fagus sylvatica L. seedlings:15N uptake and partitioning,responses of amino acids and other N compounds[J]. Plant Biol, 2002, 4(3):311-320.DOI: 10.1055/s-2002-32334.
[12]
FOTELLI M N, RIENKS M, RENNENBERG H, et al. Climate and forest management affect 15N-uptake,N balance and biomass of European beech seedlings[J]. Trees, 2004, 18(2):157-166.DOI: 10.1007/s00468-003-0289-4.
[13]
JIANG Y, WANG B, XIE B, et al. Analysis of antioxidant characteristics in seedling roots of sweetpotato (Ipomoea batatas(L.) lam.) with different drought tolerance under simulated drought stress[J]. Agric Sci Technol, 2016, 17(2):245-250,255.DOI: 10.16175/j.cnki.1009-4229.2016.02.002.
[14]
XU G H, FAN X R, MILLER A J. Plant nitrogen assimilation and use efficiency[J]. Annu Rev Plant Biol, 2012, 63:153-182.DOI: 10.1146/annurev-arplant-042811-105532.
[15]
黄小辉, 吴焦焦, 王玉书, 等. 不同供氮水平的核桃幼苗生长及叶绿素荧光特性[J]. 南京林业大学学报(自然科学版), 2022, 46(2):119-126.
HUANG X H, WU J J, WANG Y S, et al. Growth and chlorophyll fluorescence characteristics of walnut (Juglans regia) seedling under different nitrogen supply levels[J]. J Nanjing For Univ (Nat Sci Ed), 2022, 46(2):119-126.DOI: 10.12302/j.issn.1000-2006.202104016.
[16]
CHEN W L, JIN M G, FERRÉ T P A, et al. Soil conditions affect cotton root distribution and cotton yield under mulched drip irrigation[J]. Field Crops Res, 2020, 249:107743.DOI: 10.1016/j.fcr.2020.107743.
[17]
MCCORMACK M L, DICKIE I A, EISSENSTAT D M, et al. Redefining fine roots improves understanding of below-ground contributions to terrestrial biosphere processes[J]. New Phytol, 2015, 207(3):505-518.DOI: 10.1111/nph.13363.
[18]
MA Z Q, GUO D L, XU X L, et al. Evolutionary history resolves global organization of root functional traits[J]. Nature, 2018, 555(7694):94-97.DOI: 10.1038/nature25783.
[19]
LI F L, HU H, MCCORMLACK M L, et al. Community-level economics spectrum of fine-roots driven by nutrient limitations in subalpine forests[J]. J Ecol, 2019, 107(3):1238-1249.DOI: 10.1111/1365-2745.13125.
[20]
温伦敏. 江西省油茶林土壤肥力现状及养分优化管理建议[J]. 现代农业科技, 2016(9):197,200.
WEN L M. Present situation of soil fertility in Camellia oleifera forest in Jiangxi Province and suggestions on nutrient optimization management[J]. Mod Agric Sci Technol, 2016(9): 197,200.DOI: 10.3969/j.issn.1007-5739.2016.09.119.
[21]
杨婷婷, 王雪梅, 陈波浪, 等. 施氮对库尔勒香梨树体氮素吸收和积累的影响[J]. 中国土壤与肥料, 2016(4):103-107.
YANG T T, WANG X M, CHEN B L, et al. Influence on nitrogen absorption and accumulation of Korla fragrant pear tree with applying nitrogen fertilizer[J]. Soil Fertil Sci China, 2016(4):103-107.DOI: 10.11838/sfsc.20160417.
[22]
HAN S Q, YAN S H, CHEN K N, et al. 15N isotope fractionation in an aquatic food chain:Bellamya aeruginosa (Reeve) as an algal control agent[J]. J Environ Sci, 2010, 22(2):242-247.DOI: 10.1016/S1001-0742(09)60100-5.
[23]
ZHANG J B, ZHU T B, CAI Z C, et al. Nitrogen cycling in forest soils across climate gradients in Eastern China[J]. Plant Soil, 2011, 342(1):419-432.DOI: 10.1007/s11104-010-0706-6.
[24]
PREGITZER K S, DEFOREST J L, BURTON A J, et al. Fine root architecture of nine North American trees[J]. Ecol Monogr, 2002, 72(2):293.DOI:10.2307/3100029.
[25]
杨安, 李燕青, 李壮, 等. 氮磷钾肥不同滴灌撒施组合对富士苹果15N吸收分配及利用率的影响[J]. 果树学报, 2022, 39(4):564-573.
YANG A, LI Y Q, LI Z, et al. Effect of different combinations of dripping and spreading fertilization of N,P and K fertilizers on uptake,distribution and utilization of 15N in Fuji apple[J]. J Fruit Sci, 2022, 39(4):564-573.DOI: 10.13925/j.cnki.gsxb.20210431.
[26]
黄海霞, 杨琦琦, 崔鹏, 等. 裸果木幼苗根系形态和生理特征对水分胁迫的响应[J]. 草业学报, 2021, 30(1):197-207.
HUANG H X, YANG Q Q, CUI P, et al. Changes in morphological and physiological characteristics of Gymnocarpos przewalskii roots in response to water stress[J]. Acta Prataculturae Sin, 2021, 30(1):197-207.DOI: 10.11686/cyxb2020057.
[27]
冰德叶. 氮添加与凋落物覆盖对油松和华山松幼苗生长的影响[D]. 杨凌: 西北农林科技大学, 2021.
BING D Y. Effects of nitrogen addition and litter mulching on seedling growth of Pinus tabulaeformis and Pinus armandii[D]. Yangling: Northwest A & F University, 2021.DOI: 10.27409/d.cnki.gxbnu.2021.001280.
[28]
李敏, 赵熙州, 王好运, 等. 干旱胁迫及外生菌根菌对马尾松幼苗根系形态及分泌物的影响[J]. 林业科学, 2022, 58(7):63-72.
LI M, ZHAO X Z, WANG H Y, et al. Effects of drought stress and ectomycorrhizal fungi on the root morphology and exudates of Pinus massoniana seedlings[J]. Sci Silvae Sin, 2022, 58(7):63-72.DOI: 10.11707/j.1001-7488.20220707.
[29]
DUAN D D, JIANG F F, LIN W H, et al. Effects of drought on the growth of Lespedeza davurica through the alteration of soil microbial communities and nutrient availability[J]. J Fungi, 2022, 8(4):384.DOI: 10.3390/jof8040384.
[30]
张国娟, 濮晓珍, 张鹏鹏, 等. 干旱区棉花秸秆还田和施肥对土壤氮素有效性及根系生物量的影响[J]. 中国农业科学, 2017, 50(13):2624-2634.
ZHANG G J, PU X Z, ZHANG P P, et al. Effects of stubble returning to soil and fertilization on soil nitrogen availability and root biomass of cotton in arid region[J]. Sci Agric Sin, 2017, 50(13):2624-2634.DOI: 10.3864/j.issn.0578-1752.2017.13.020.
[31]
ZHANG Z H, TARIQ A, ZENG F J, et al. Nitrogen application mitigates drought-induced metabolic changes in Alhagi sparsifolia seedlings by regulating nutrient and biomass allocation patterns[J]. Plant Physiol Biochem, 2020, 155:828-841.DOI: 10.1016/j.plaphy.2020.08.036.
[32]
陶晨悦, 邵珊璐, 史文辉, 等. 氮沉降对干旱胁迫下毛竹实生苗生物量和保护酶活性的影响[J]. 林业科学, 2019, 55(9):31-40.
TAO C Y, SHAO S L, SHI W H, et al. Effects of nitrogen deposition on biomass and protective enzyme activities of Phyllostachys edulis seedlings under drought stress[J]. Sci Silvae Sin, 2019, 55(9):31-40.DOI: 10.11707/j.1001-7488.20190904.
[33]
曲秋玲, 王国梁, 刘国彬, 等. 施氮对白羊草细根形态和生长的影响[J]. 水土保持通报, 2012, 32(2):74-79.
QU Q L, WANG G L, LIU G B, et al. Effect of N addition on root morphological characteristics and growth of Bothriochloa ischaemun[J]. Bull Soil Water Conserv, 2012, 32(2):74-79.DOI: 10.13961/j.cnki.stbctb.2012.02.054.
[34]
王瑞, 陈隆升, 王湘南, 等. 氮素形态对油茶苗木生长及生理指标的影响[J]. 南京林业大学学报(自然科学版), 2019, 43(4):26-32.
WANG R, CHEN L S, WANG X N, et al. Effects of different proportion of nitrogen forms on the growth and physiological characteristics of Camellia oleifera seedlings[J]. J Nanjing For Univ (Nat Sci Ed), 2019, 43(4):26-32.DOI: 10.3969/j.issn.1000-2006.201809039.
[35]
RINGSELLE B, PRIETO-RUIZ I, ANDERSSON L, et al. Elymus repens biomass allocation and acquisition as affected by light and nutrient supply and companion crop competition[J]. Ann Bot, 2017, 119(3):477-485.DOI: 10.1093/aob/mcw228.
[36]
WANG Q, LIU C H, HUANG D, et al. Physiological evaluation of nitrogen use efficiency of different apple cultivars under various nitrogen and water supply conditions[J]. J Integr Agric, 2020, 19(3):709-720.DOI: 10.1016/S2095-3119(19)62848-0.
[37]
陈丽楠, 韩晓日, 孙占祥, 等. 局部根区交替灌溉与氮素耦合对葡萄生长及15N-尿素利用的影响[J]. 核农学报, 2021, 35(2):447-453.
CHEN L N, HAN X R, SUN Z X, et al. Coupling effects of alternate partial root-zone irrigation and nitrogen rate on growth and 15N-urea use of grapes[J]. J Nucl Agric Sci, 2021, 35(2):447-453.DOI: 10.11869/j.issn.100-8551.2021.02.0447.
[38]
NUNES-NESI A, FERNIE A R, STITT M. Metabolic and signaling aspects underpinning the regulation of plant carbon nitrogen interactions[J]. Mol Plant, 2010, 3(6):973-996.DOI: 10.1093/mp/ssq049.
[39]
马晓东, 钟小莉, 桑钰. 干旱胁迫下胡杨实生幼苗氮素吸收分配与利用[J]. 生态学报, 2018, 38(20):7508-7519.
MA X D, ZHONG X L, SANG Y. Characteristics of nitrogen absorption,distribution,and utilization by Populus euphratica seedlings under drought stress[J]. Acta Ecol Sin, 2018, 38(20):7508-7519.DOI: 10.5846/stxb201711282136.
[40]
李树斌, 周丽丽, 伍思攀, 等. 不同氮素形态对干旱胁迫杉木幼苗养分吸收及分配的影响[J]. 植物营养与肥料学报, 2020, 26(1):152-162.
LI S B, ZHOU L L, WU S P, et al. Effects of different nitrogen forms on nutrient uptake and distribution of Cunninghamia lanceolata plantlets under drought stress[J]. J Plant Nutr Fertil, 2020, 26(1):152-162.DOI: 10.11674/zwyf.19049.
PDF(1626 KB)

Accesses

Citation

Detail

Sections
Recommended
The full text is translated into English by AI, aiming to facilitate reading and comprehension. The core content is subject to the explanation in Chinese.

/