The tailwater purification effectiveness of three aquatic plants and their subsequent physiological changes aquatic

XIA Tongtong, WU Yongbo, PU Keyi, WANG Mingli

JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2024, Vol. 48 ›› Issue (5) : 221-227.

PDF(2174 KB)
PDF(2174 KB)
JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2024, Vol. 48 ›› Issue (5) : 221-227. DOI: 10.12302/j.issn.1000-2006.202304011

The tailwater purification effectiveness of three aquatic plants and their subsequent physiological changes aquatic

Author information +
History +

Abstract

【Objective】 This study aims to explore the effectiveness of hydrophytes in purifying tailwater from a sewage plant and the subsequent changes in their physiological characteristics. The results will provide a reference for the effective purification of tailwater and the selection of suitable hydrophytes for this task. 【Method】 Taking Schoenoplectus tabernaemontani, Typha orientalis and Iris pseudocorus as research objects, pot-control experiments were conducted to simulate the preparation of two different tailwaters, each characterized by different concentrations of contaminants. The removal effects on chemical oxygen demand (COD), total nitrogen (TN) and total phosphorus (TP), and the subsequent physiological characteristics of the three hydrophytes in the two different tailwaters were analyzed. 【Result】 The three types of hydrophytes all had strong removal effects for COD, TN and TP in tailwater. The COD concentration in tailwater decreased from 61.42-107.28 to 8.63-16.20 mg/L, the TN concentration decreased from 24.49-31.54 to 0.40-7.90 mg/L, and the TP concentration decreased from 2.11-3.43 to 0.05-1.00 mg/L. The antioxidant enzyme activity and relative conductivity of S. tabernaemontani and I. pseudocorus increased in the tailwater, while the peroxidase activity and relative conductivity of T. orientalis decreased significantly (P <0.05), and the catalase activity increased significantly (P <0.05). The chlorophyll content of all three hydrophytes in the tailwater decreased significantly (P <0.05), while the photosynthesis of S. tabernaemontani decreased in the tailwater with the higher concentration of contaminants. 【Conclusion】 Schoenoplectus tabernaemontani, T. orientalis and I. pseudocorus had significant removal effects on COD, TN and TP in the tailwater. The physiological metabolism of hydrophytes was affected following the exposure to the tailwater. It was concluded that S. tabernaemontani and T. orientalis can be planted together for purifying tailwater with low concentrations of contaminants, while I. pseudocorus can be used for the purification of severely contaminated tailwater.

Key words

aquatic plant / tailwater purification / physiological characteristics / Schoenoplectus tabernaemontani / Typha orientalis / Iris pseudacorus

Cite this article

Download Citations
XIA Tongtong , WU Yongbo , PU Keyi , et al. The tailwater purification effectiveness of three aquatic plants and their subsequent physiological changes aquatic[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2024, 48(5): 221-227 https://doi.org/10.12302/j.issn.1000-2006.202304011

References

[1]
KHANH NGUYEN V, CHAUDHARY D K, DAHAL R H, et al. Review on pretreatment techniques to improve anaerobic digestion of sewage sludge[J]. Fuel, 2021, 285:119105.DOI:10.1016/j.fuel.2020.119105.
[2]
LIANG Y, XU D H, FENG P, et al. Municipal sewage sludge incineration and its air pollution control[J]. J Clean Prod, 2021, 295:126456.DOI:10.1016/j.jclepro.2021.126456.
[3]
国家环境保护总局. GB 3838—2002 地表水环境质量标准[S]. 北京: 中国环境科学出版社, 2002.
[4]
LU X M, HUANG M S. Nitrogen and phosphorus removal and physiological response in aquatic plants under aeration conditions[J]. Int J Environ Sci Technol, 2010, 7(4):665-674.DOI:10.1007/BF03326176.
[5]
何强, 胡书山, 向泽毅, 等. 垂直流人工湿地系统净化污水厂尾水脱氮效果[J]. 中国环境科学, 2023, 43(8) :3956-3965.
HE Q, HU S S, XIANG Z Y, et al. Study on the nitrogen removal ability of vertical flow constructed wetland treating tailwater of sewage plant[J]. China Environ Sci, 2023, 43(8):3956-3965.DOI: 10.19674/j.cnki.issn1000-6923.20230326.002.
[6]
丁仁伟. 曝气强化人工湿地深度处理污水厂尾水试验研究[D]. 扬州: 扬州大学, 2021.
DING R W. Experimental study on advanced treatment of tail water from wastewater treatment plant by aeration enhanced constructed wetland[D]. Yangzhou: Yangzhou University, 2021.
[7]
管策, 郁达伟, 郑祥, 等. 我国人工湿地在城市污水处理厂尾水脱氮除磷中的研究与应用进展[J]. 农业环境科学学报, 2012, 31(12):2309-2320.
GUAN C, YU D W, ZHENG X, et al. Removing nitrogen and phosphoros of effluent from wastewater treatment plants by constructed wetlands in China: an overview[J]. J Agro Environ Sci, 2012, 31(12):2309-2320.
[8]
李青, 张琼华, 周卫东, 等. 人工湿地净化污水处理厂低浓度尾水的效果[J]. 水生生物学报, 2022, 46(10):1456-1465.
LI Q, ZHANG Q H, ZHOU W D, et al. Performance of constructed wetland for low concentration effluent purification from sewage treatment plant[J]. Acta Hydrobiol Sin, 2022, 46(10):1456-1465.DOI:10.7541/2023.2022.0134.
[9]
张倩妮, 陈永华, 杨皓然, 等. 29种水生植物对农村生活污水净化能力研究[J]. 农业资源与环境学报, 2019, 36(3):392-402.
ZHANG Q N, CHEN Y H, YANG H R, et al. Study on the purification ability of 29 aquatic plants to rural domestic sewage[J]. J Agric Resour Environ, 2019, 36(3):392-402.DOI: 10.13254/j.jare.2018.0235.
[10]
康彩霞, 戴星照, 刘艳. 高浓度氨氮或磷胁迫对亚洲苦草生理特性的影响[J]. 安全与环境工程, 2018, 25(3):72-77.
KANG C X, DAI X Z, LIU Y. Physiological responses of Vallisneria asiatica to the stress of high concentrations of ammonia N or P[J]. Saf Environ Eng, 2018, 25(3):72-77.DOI:10.13578/j.cnki.issn.1671-1556.2018.03.012.
[11]
程丽芬, 张欣. 5种水生植物对煤矿废水的适应性及净化效果[J]. 浙江农林大学学报, 2019, 36(4):801-809.
CHENG L F, ZHANG X. Adap-tability and purification effect on coal mine wastewater with five aquatic plants[J]. J Zhejiang A F Univ, 2019, 36(4):801-809.DOI:10.11833/j.issn.2095-0756.2019.04.021.
[12]
谢东升, 朱文逸, 陈劲鹏, 等. 5种华南地区水生植物对城市生活污水的净化效果[J]. 环境工程学报, 2019, 13(8):1903-1908.
XIE D S, ZHU W Y, CHEN J P, et al. Effects of five aquatic plants in south China on purification of municipal wastewater[J]. Chin J Environ Eng, 2019, 13(8):1903-1908.DOI:10.12030/j.cjee.201811074.
[13]
LIU Z C, CHEN B N, WANG L A. Removal of nitrogen and phosphorus from sewage by four aquatic plants[J]. Fresen Environ Bull, 2019, 28(12A):10125-10130.DOI:10.2991/meic-15.2015.290.
[14]
耿兵, 张燕荣, 王妮珊, 等. 不同水生植物净化污染水源水的试验研究[J]. 农业环境科学学报, 2011, 30(3):548-553.
GENG B, ZHANG Y R, WANG N S, et al. Effects of hydrophytes on the purification of polluted water[J]. J Agro Environ Sci, 2011, 30(3):548-553.
[15]
国家环境保护总局. 城镇污水处理厂污染物排放标准:GB 18918—2002[S]. 北京: 中国标准出版社, 2002.
[16]
中华人民共和国环境保护部. 水质化学需氧量的测定重铬酸盐法:HJ 828—2017[S]. 北京: 中国环境出版社, 2017.
[17]
中华人民共和国环境保护部. 水质总氮的测定碱性过硫酸钾消解紫外分光光度法:HJ 636—2012[S]. 北京: 中国环境科学出版社, 2012.
[18]
国家环境保护总局. 水质总磷的测定钼酸铵分光光度法:GB 11893—89[S]. 北京: 中国标准出版社, 1989.
[19]
陈建勋, 王晓峰. 植物生理学实验指导[M]. 2版. 广州: 华南理工大学出版社, 2006:64-65.
CEHN J X, WANG X F. Experimental instructtion of plant physiology[M]. 2nd ed. Guangzhou: South China University of Technology Press, 2006:64-65.
[20]
李合生. 植物生理生化实验原理和技术[M]. 北京: 高等教育出版社, 2000:130,164-165.
LI H S. Principles and techniques of plant physiolo-gical biochemical experiment[M]. Beijing: Higher Education Press, 2000:130,164-165.
[21]
周晓红, 王国祥, 冯冰冰, 等. 3种景观植物对城市河道污染水体的净化效果[J]. 环境科学研究, 2009, 22(1):108-113.
ZHOU X H, WANG G X, FENG B B, et al. Purification effect of nitrogen and phosphorus in polluted water of urban rivers by three landscape plants[J]. Res Environ Sci, 2009, 22(1):108-113.DOI:10.13198/j.res.2009.01.110.zhouxh.018.
[22]
李美玉, 李婉, 魏佳明, 等. 人工湿地在污水处理厂尾水水质净化中的应用[J]. 环境生态学, 2022, 4(6):54-58.
LI M Y, LI W, WEI J M, et al. Application of constructed wetland system in purification of tail water quality of sewage treatment plant[J]. Environ Ecol, 2022, 4(6):54-58.
[23]
汤显强, 李金中, 李学菊, 等. 7种水生植物对富营养化水体中氮磷去除效果的比较研究[J]. 亚热带资源与环境学报, 2007, 2(2):8-14.
TANG X Q, LI J Z, LI X J, et al. Research on seven hydrophytes’ removal effect on nitrogen and phosphorus in eutrophic water[J]. J Subtrop Resour Environ, 2007, 2(2):8-14.DOI:10.19687/j.cnki.1673-7105.2007.02.002.
[24]
李龙山, 倪细炉, 李志刚, 等. 5种湿地植物生理生长特性变化及其对污水净化效果的研究[J]. 农业环境科学学报, 2013, 32(8):1625-1632.
LI L S, NI X L, LI Z G, et al. Growth characteristics and sewage cleaning effect of five wetland plants[J]. J Agro Environ Sci, 2013, 32(8): 1625-1632.DOI:10.11654/jaes.2013.08.020.
[25]
褚润, 陈年来, 王小娟, 等. 人工湿地挺水植物脱氮效果研究[J]. 环境污染与防治, 2017, 39(8):884-889.
CHU R, CHEN N L, WANG X J, et al. The nitrogen removal effect of emergent plant in constructed wetland[J]. Environ Pollut Contr, 2017, 39(8):884-889,894.DOI:10.15985/j.cnki.1001-3865.2017.08.015.
[26]
伏彩中, 肖瑜, 高士祥. 模拟水生生态系统中沉水植物对水体营养物质消减的影响[J]. 环境污染与防治, 2006, 28(10):753-756.
FU C Z, XIAO Y, GAO S X. Effect of submerged plants on nutrient removal in model aquatic ecosystem[J]. Environ Pollut Contr, 2006, 28(10):753-756. DOI:10.3969/j.issn.1001-3865.2006.10.010.
[27]
吴湘, 王友慧, 郭建林, 等. 3类水生植物对池塘养殖废水氮磷去除效果的研究[J]. 西北植物学报, 2010, 30(9):1876-1881.
WU X, WANG Y H, GUO J L, et al. N and P removal from pond effluent with three hydrophytes[J]. Acta Bot Boreali Occidentalia Sin, 2010, 30(9):1876-1881.
[28]
孙瑞莲, 刘健. 3种挺水植物对污水的净化效果及生理响应[J]. 生态环境学报, 2018, 27(5):926-932.
SUN R L, LIU J. Physiological response of emergent hydrophytes to wastewater stress and their potential for reducing COD and nutrients[J]. Ecol Environ Sci, 2018, 27(5):926-932.DOI: 10.16258/j.cnki.1674-5906.2018.05.018.
[29]
张波, 师生波, 李和平, 等. 青藏高原不同海拔地区唐古特山莨菪叶片光合色素含量和抗氧化酶活性的比较研究[J]. 西北植物学报, 2008, 28(9):1778-1786.
ZHANG B, SHI S B, LI H P, et al. Comparison of photosynthetic pigment contents and antioxidase activity of Anisodus tanguticus from different leaf layers grown at two altitudes level in Qinghai-Tibet Plateau[J]. Acta Bot Boreali Occidentalia Sin, 2008, 28(9):1778-1786.DOI:10.3321/j.issn:1000-4025.2008.09.012.
[30]
黄雪方, 李冬林, 金雅琴, 等. 5种挺水植物对污水浸淹的生理反应及净水效果[J]. 南京林业大学学报(自然科学版), 2012, 55(5):66-70.
HUANG X F, LI D L, JIN Y Q, et al. Physiological responses and purifying effects of five emerged plants under sewage submerging[J]. J Nanjing For Univ (Nat Sci Ed), 2012, 55(5): 66-70.DOI: 10.3969/j.jssn.1000-2006.2012.05.012.
[31]
BENNETT D I G, AMARNATH K, FLEMING G R. A structure-based model of energy transfer reveals the principles of light harvesting in photosystem II super complexes[J]. J Am Chem Soc, 2013, 135(24):9164-9173.DOI:10.1021/ja403685a.
[32]
FARIA T, SILVÉRIO D, BREIA E, et al. Differences in the response of carbon assimilation to summer stress (water deficits,high light and temperature) in four Mediterranean tree species[J]. Physiol Plant, 1998, 102(3):419-428.DOI:10.1034/j.1399-3054.1998.1020310.x.
[33]
WANG C, ZHANG S H, WANG P F, et al. Metabolic adaptations to ammonia-induced oxidative stress in leaves of the submerged macrophyte Vallisneria natans (Lour.) Hara[J]. Aquat Toxicol, 2008, 87(2):88-98.DOI:10.1016/j.aquatox.2008.01.009.
[34]
赵湘江, 杨兰. 水质恶化影响下香蒲、水葱叶片的光合响应[J]. 安徽农业科学, 2017, 45(20):77-80.
ZHAO X J, YANG L. Photosynthetic response of Typha orientalis and Scirpus tabernaemontani leaves under water quality deterioration[J]. J Anhui Agric Sci, 2017, 45(20):77-80.DOI:10.13989/j.cnki.0517-6611.2017.20.021.
[35]
高冠龙, 冯起, 张小由, 等. 植物叶片光合作用的气孔与非气孔限制研究综述[J]. 干旱区研究, 2018, 35(4):929-937.
GAO G L, FENG Q, ZHANG X Y, et al. An overview of stomatal and non-stomatal limitations to photosynthesis of plants[J]. Arid Zone Res, 2018, 35(4):929-937.DOI:10.13866/j.azr.2018.04.22.
[36]
PEREIRA E G, OLIVA M A, ROSADO-SOUZA L, et al. Iron excess affects rice photosynthesis through stomatal and non-stomatal limitations[J]. Plant Sci, 2013, 201:81-92.DOI:10.1016/j.plantsci.2012.12.003.
PDF(2174 KB)

Accesses

Citation

Detail

Sections
Recommended
The full text is translated into English by AI, aiming to facilitate reading and comprehension. The core content is subject to the explanation in Chinese.

/