The spatio-temporal characteristics of soil erosion in orchards of Dalian City based on the CSLE model

JI Xinyu, YU Yue, ZHANG Sifan, LIU Yuanyuan

JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2024, Vol. 48 ›› Issue (3) : 117-124.

PDF(3079 KB)
PDF(3079 KB)
JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2024, Vol. 48 ›› Issue (3) : 117-124. DOI: 10.12302/j.issn.1000-2006.202304015

The spatio-temporal characteristics of soil erosion in orchards of Dalian City based on the CSLE model

Author information +
History +

Abstract

【Objective】 The orchards in Dalian City suffer from soil erosion due to vigorous developmental activities. This study aimed to quantitatively analyze the status of soil erosion, determine the spatio-temporal characteristics of soil erosion in orchards in Dalian City, and explore the key factors that influence soil erosion. The results can provide significant insights for the healthy development and ecological protection of the orchard industry in Dalian City. 【Method】 The characteristics of soil erosion in orchards in Dalian City were assessed by using the Chinese soil loss equation (CSLE) model, based on geographic big data available online. The results were visually interpreted, and the dynamic changes and factors influencing soil erosion in the study area were subsequently analyzed. 【Result】 The area of soil erosion constituted approximately 40% of the total area of Dalian City, and the erosion was serious in the northern and southern mountainous and hilly regions. The average soil erosion modulus of the orchards in Dalian City was 1 230.29, 1 150.95, 2 311.36, 6 384.55, 3 399.60 and 3 484.24 t/(km2·a) in 2015, 2016, 2017, 2018, 2019 and 2020, respectively. Analysis of the intensity of soil erosion primarily revealed micro and slight erosion. Strong and above grade erosion was primarily observed in Ganjingzi, Jinzhou, and Lüshunkou District. Soil erosion was primarily observed in slope grades below 25° and in regions with rainfall grades ranging between 500 and 900 mm. The finding revealed that greenhouse coverage could reduce soil erosion in greenhouse orchards and open field/facility orchards, and vegetation coverage could effectively reduce soil erosion in open field orchards. 【Conclusion】 Soil erosion in the orchards in Dalian City exhibits obvious spatial distribution characteristics in that the intensity of erosion is high in the south and low in the north area. The successful control of soil erosion in orchards and the efficient promotion and sustainable development of the orchard industry can be achieved in future by increasing the area of greenhouse coverage, increasing the vegetation coverage of outdoor greenhouses, and selecting the location of orchards reasonably.

Key words

soil erosion / soil erosion modulus / CSLE model / facility greenhouse / orchard of Dalian City

Cite this article

Download Citations
JI Xinyu , YU Yue , ZHANG Sifan , et al. The spatio-temporal characteristics of soil erosion in orchards of Dalian City based on the CSLE model[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2024, 48(3): 117-124 https://doi.org/10.12302/j.issn.1000-2006.202304015

References

[1]
怡凯, 王诗阳, 王雪, 等. 基于RUSLE模型的土壤侵蚀时空分异特征分析: 以辽宁省朝阳市为例[J]. 地理科学, 2015, 35(3): 365-372.
YI K, WANG S Y, WANG X, et al. The characteristics of spatial-temporal differentiation of soil erosion based on RUSLE model: a case study of Chaoyang City, Liaoning Province[J]. Sci Geogr Sin, 2015, 35(3): 365-372. DOI: 10.13249/j.cnki.sgs.2015.03.016.
[2]
张燕, 彭补拙, 高翔, 等. 人类干扰对土壤侵蚀及土壤质量的影响: 以苏南宜兴低山丘陵区为例[J]. 地理科学, 2002, 22(3): 336-341.
ZHANG Y, PENG B Z, GAO X, et al. Impact on soil erosion and soil properties by human disturbance:case of the low mountains and hills of Yixing, south Jiangsu Province[J]. Sci Geogr Sin, 2002, 22(3): 336-341. DOI: 10.3969/j.issn.1000-0690.2002.03.014.
[3]
王坚桦, 邱凡, 谢福倩, 等. 清耕对赤红壤果园坡面土壤侵蚀特征的影响[J]. 水土保持研究, 2022, 29(3): 12-17.
WANG J H, QIU F, XIE F Q, et al. Effects of cleaning tillage on soil erosion characteristics of lateritic red soil on slope in orchard[J]. Res Soil Water Conserv, 2022, 29(3): 12-17. DOI: 10.13869/j.cnki.rswc.20210926.003.
[4]
大连市统计局. 大连统计年鉴[M]. 北京: 中国统计出版社, 2021.
Dalian Municipal Bureau of Statistics. Dalian statistical yearbook[M]. Beijing: China Statistical Publishing House, 2021.
[5]
王耕, 韩冬雪. 1964—2014年大连市降雨侵蚀力时空演变分析[J]. 中国水土保持, 2017(11): 54-56, 67.
WANG G, HAN D X. Temporal and spatial variability of rainfall erosivity in Dalian City in the period from 1964 to 2014[J]. Soil Water Conserv China, 2017(11):54-56, 67. DOI: 10.14123/j.cnki.swcc.2017.0287.
[6]
陈茁新, 张金池. 近10年全球水土保持研究热点问题述评[J]. 南京林业大学学报(自然科学版), 2018, 42(3): 167-174.
CHEN Z X, ZHANG J C. Review of global soil and water conservation in last ten years[J]. J Nanjing For Univ (Nat Sci Ed), 2018, 42(3): 167-174. DOI: 10.3969/j.issn.1000-2006.201709028.
[7]
WISCHMEIER W H, SMITH D D. Predicting rainfall erosion losses: a guide to conservation planning[R]. Washington D C: U. S. Dept of Agriculture, Science and Education Administration, 1978.
[8]
RENARD K G. Predicting soil erosion by water: a guide to conservation planning with the revised universal soil loss equation (RUSLE)[M]. Washington, D. C.: U. S. Dept. of Agriculture, Agricultural Research Service, 1997.
[9]
LIU B Y, ZHANG K L, XIE Y. An empirical soil loss equation[C]// Proceedings of the 12th International Soil Conservation Organization Conference. Process of Erosion and its Environmental Effects. Beijing: Tsinghua University, 2002: 21-25.
[10]
陈锐银, 严冬春, 文安邦, 等. 基于GIS/CSLE的四川省水土流失重点防治区土壤侵蚀研究[J]. 水土保持学报, 2020, 34(1): 17-26.
CHEN R Y, YAN D C, WEN A B, et al. Research on soil erosion in key prevention and control region of soil and water loss based on GIS/CSLE in Sichuan Province[J]. J Soil Water Conserv, 2020, 34(1): 17-26. DOI: 10.13870/j.cnki.stbcxb.2020.01.003.
[11]
董丽霞, 蒋光毅, 张志兰, 等. 重庆市中国土壤流失方程因子研究进展[J]. 中国水土保持, 2021(2): 40-44,69.
DONG L X, JIANG G Y, ZHANG Z L, et al. Research progress of the factors of Chinese soil loss equation in Chongqing[J]. Soil Water Conserv China, 2021(2):40-44, 69. DOI: 10.14123/j.cnki.swcc.2021.0038.
[12]
陈羽璇, 杨勤科, 刘宝元, 等. 基于CSLE模型的珠江流域土壤侵蚀强度评价[J]. 中国水土保持科学(中英文), 2021, 19(6): 86-93.
CHEN Y X, YANG Q K, LIU B Y, et al. Assessment of soil erosion intensity in Pearl River basin based on CSLE model[J]. Sci Soil Water Conserv, 2021, 19(6): 86-93. DOI: 10.16843/j.sswc.2021.06.011.
[13]
李嘉麟, 陈家慧, 华丽, 等. 基于CSLE的湖北省土壤侵蚀时空变化特征[J]. 水土保持学报, 2022, 36(4): 43-52,62.
LI J L, CHEN J H, HUA L, et al. Spatial and temporal characteristics of soil erosion in Hubei Province based on CSLE[J]. J Soil Water Conserv, 2022, 36(4): 43-52,62. DOI: 10.13870/j.cnki.stbcxb.2022.04.007.
[14]
游浩妍, 黄曦涛, 陈瑞. 基于CSLE模型的神木市土壤侵蚀模数计算[J]. 中国水土保持, 2021(4): 47-49,68,9.
YOU H Y, HUANG X T, CHEN R. Calculation of soil erosion modulus in Shenmu City based on CSLE model[J]. Soil Water Conserv China, 2021(4):47-49,68,9. DOI: 10.14123/j.cnki.swcc.2021.0093.
[15]
沈子雅, 杨志, 李建国, 等. 基于CSLE模型的宁夏黄土地区水土保持措施因子研究[J]. 中国水土保持, 2021(7): 53-55,5.
SHEN Z Y, YANG Z, LI J G, et al. Research on factors of soil and water conservation measures in Ningxia loess area based on CSLE model[J]. Soil Water Conserv China, 2021(7):53-55,5. DOI: 10.14123/j.cnki.swcc.2021.0169.
[16]
马亚亚, 王杰, 张超, 等. 基于CSLE模型的陕北纸坊沟流域土壤侵蚀评价[J]. 水土保持通报, 2018, 38(6): 95-102.
MA Y Y, WANG J, ZHANG C, et al. Evaluation of soil erosion based on CSLE model in Zhifanggou watershed of northern Shaanxi Province[J]. Bull Soil Water Conserv, 2018, 38(6): 95-102. DOI: 10.13961/j.cnki.stbctb.20180904.001.
[17]
顾治家, 谢云, 李骜, 等. 利用CSLE模型的东北漫川漫岗区土壤侵蚀评价[J]. 农业工程学报, 2020, 36(11): 49-56.
GU Z J, XIE Y, LI A, et al. Assessment of soil erosion in rolling hilly region of northeast China using Chinese soil loss equation (CSLE) model[J]. Trans Chin Soc Agric Eng, 2020, 36(11): 49-56. DOI: 10.11975/j.issn.1002-6819.2020.11.006.
[18]
苏新宇, 吴镇宇, 刘霞, 等. 基于CSLE模型的区域水土流失风险分析[J]. 中国水土保持科学(中英文), 2021, 19(5): 27-36.
SU X Y, WU Z Y, LIU X, et al. Regional soil erosion risk analysis based on CSLE model[J]. Sci Soil Water Conserv, 2021, 19(5): 27-36. DOI: 10.16843/j.sswc.2021.05.004.
[19]
黄艳玲, 栾其琛. 大连市绿色有机及地理标志农产品发展现状与对策建议[J]. 农产品质量与安全, 2021(6): 63-66.
HUANG Y L, LUAN Q C. Development status and countermeasures of green organic and geographical indications agro-products in Dalian[J]. Qual Saf Agro Prod, 2021(6): 63-66. DOI:10.3969/j.issn.1674-8255.2021.06.012.
[20]
FISCHER G, NACHTERGAELE F, PRIELEI S, et al. Global agro-ecological zones assessment for agriculture. [DS/OL]. Austria and Italy: IIASA and FAO, 2008 [2023-03-27]. https://www.fao.org/
[21]
GONG P, LIU H, ZHANG M N, et al. Stable classification with limited sample:transferring a 30 m resolution sample set collected in 2015 to mapping 10 m resolution global land cover in 2017[J]. Sci Bull, 2019, 64(6): 370-373. DOI: 10.1016/j.scib.2019.03.002.
[22]
NASA JPL. NASADEM merged DEM global 1 arc second V001[DS/OL]. Washing to D C: NASA EOSDIS Land Processes Distributed Active Archive Center, 2018[2023-03-27].https://doi.org/10.5067/MEaSUREs/NASADEM/NASADEM_HGT.001.
[23]
WISCHMEIER W H, Smith D D. Rainfall energy and its relationship to soil loss[J]. Eos Trans AGU, 1958, 39(2): 285-291. DOI: 10.1029/TR039i002p00285.
[24]
崔云燕. 大连市土壤侵蚀评价[D]. 大连: 辽宁师范大学, 2010.
CUI Y Y. Evaluation of soil erosion in Dalian City[D]. Dalian: Liaoning Normal University, 2010.
[25]
SHARPLEY A N, WILLIAMS J R. EPIC-erosion/productivity impact calculator: 1. model documentation[M]. United States: USDA Technical Bulletin, 1990.
[26]
张科利, 彭文英, 杨红丽. 中国土壤可蚀性值及其估算[J]. 土壤学报, 2007, 44(1): 7-13.
ZHANG K L, PENG W Y, YANG H L. Soil erodibility and its estimation for agricultural soil in China[J]. Acta Pedol Sin, 2007, 44(1): 7-13. DOI: 10.3321/j.issn:0564-3929.2007.01.002.
[27]
符素华, 刘宝元, 周贵云, 等. 坡长坡度因子计算工具[J]. 中国水土保持科学, 2015, 13(5): 105-110.
FU S H, LIU B Y, ZHOU G Y, et al. Calculation tool of topographic factors[J]. Sci Soil Water Conserv, 2015, 13(5): 105-110. DOI: 10.16843/j.sswc.2015.05.018.
[28]
蔡崇法, 丁树文, 史志华, 等. 应用USLE模型与地理信息系统IDRISI预测小流域土壤侵蚀量的研究[J]. 水土保持学报, 2000, 14(2): 19-24.
CAI C F, DING S W, SHI Z H, et al. Study of applying USLE and geographical information system IDRISI to predict soil erosion in small watershed[J]. J Soil Water Conserv, 2000, 14(2): 19-24. DOI: 10.13870/j.cnki.stbcxb.2000.02.005.
[29]
中华人民共和国水利部. 土壤侵蚀分级分类标准[S]. 北京: 中国水利水电出版社, 2008.
Ministry of Water Resources of the People’s Republic of China. Standards for classification and gradation of soil erosion[S]. Beijing: China Water & Power Press, 2008.
[30]
刘思艺, 黄凤荣. 基于GIS的大连市土壤侵蚀强度估测[J]. 科学技术创新, 2021(22): 173-175.
LIU S Y, HUANG F R. Estimation of soil erosion intensity in Dalian based on GIS[J]. Sci Technol Innov, 2021(22): 173-175.
[31]
汤紫霞. 福建省农业大棚遥感信息提取[D]. 福州: 福州大学, 2021.
TANG Z X. Remote sensing extraction of agricultural greenhouses in Fujian Province[D]. Fuzhou: Fuzhou University, 2021. DOI: 10.27022/d.cnki.gfzhu.2021.000483.
[32]
周璟, 张旭东, 何丹, 等. 基于GIS与RUSLE的武陵山区小流域土壤侵蚀评价研究[J]. 长江流域资源与环境, 2011, 20(4): 468-474.
ZHOU J, ZHANG X D, HE D, et al. Soil erosion evaluation of small watershed in Wuling Mountain based on GIS and rusle[J]. Resour Environ Yangtze Basin, 2011, 20(4): 468-474.
[33]
ZHANG J C, ZHUANG J Y, SU J S, et al. Development of GIS-based FUSLE model in a Chinese fir forest sub-catchment with a focus on the litter in the Dabie Mountains, China[J]. For Ecol Manag, 2008, 255(7): 2782-2789. DOI: 10.1016/j.foreco.2008.01.045.
PDF(3079 KB)

Accesses

Citation

Detail

Sections
Recommended
The full text is translated into English by AI, aiming to facilitate reading and comprehension. The core content is subject to the explanation in Chinese.

/