Analysis of genetic diversity and construction of core collections of Korean pine (Pinus koraiensis) natural population

YAN Pingyu, ZHANG Lei, WANG Jiaxing, FENG Kele, WANG Haohao, ZHANG Hanguo

JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2024, Vol. 48 ›› Issue (5) : 69-80.

PDF(2522 KB)
PDF(2522 KB)
JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2024, Vol. 48 ›› Issue (5) : 69-80. DOI: 10.12302/j.issn.1000-2006.202304035

Analysis of genetic diversity and construction of core collections of Korean pine (Pinus koraiensis) natural population

Author information +
History +

Abstract

【Objective】 Korean pine (Pinus koraiensis) is a valuable tree species that is distributed throughout northeastern China. Over the past century, human interference has led to a gradual decrease in the number of individuals and distribution of its natural population. Assessing the genetic diversity and building a core collection of natural Korean pine could provide a scientific basis for the effective conservation, management, and utilization of Korean pine germplasm resources. 【Method】 A total of five well-preserved natural populations of Korean pine in Hebei, Wuying, Xiaobeihu and Jixi in Heilongjiang Province and Lushuihe in Jilin Province in northeast China were studied. A combination of phenotypic data and molecular markers was used to construct the core collection. 【Result】 Molecular and phenotypic ANOVA results showed that the genetic variation of Korean pine natural populations mainly originated from inter-individual differences, which accounted for 96% and 72.84% of the total variation, respectively. The Jixi population was genetically distant from other populations, with an average Fst of 0.026 8. It also had a high genetic diversity, with Shannon and phenotypic diversity index values of 1.111 and 2.00, respectively. The population structure analysis showed that the five Korean pine natural populations had no obvious subpopulation structure. There were no significant changes in the genetic diversity of Korean pine populations among the different forest ages. Additionally, in the younger forest there was no evidence of heterozygous deletions or inbreeding. There was a broad correlation between needle traits and geographic factors, resulting in the phenotypic differentiation of Korean pine populations. 【Conclusion】 The Shannon and phenotypic diversity indexes of the core collection constructed by combining molecular and phenotypic markers with a 30% sampling ratio were 1.076 and 2.018, respectively, which was representative of the genetic status of Korean pine populations. This information can be used to better manage the germplasm resources of Korean pine and promote its protection and use. The genetic structure characteristics indicated a need to focus on in situ protection of the natural germplasm and to promote ecological recovery, germplasm protection, and use of Korean pine.

Key words

Korean pine(Pinus koreciensis) / natural populations / genetic diversity / genetic structure / core collection / forest breeding / native trees

Cite this article

Download Citations
YAN Pingyu , ZHANG Lei , WANG Jiaxing , et al . Analysis of genetic diversity and construction of core collections of Korean pine (Pinus koraiensis) natural population[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2024, 48(5): 69-80 https://doi.org/10.12302/j.issn.1000-2006.202304035

References

[1]
马建路, 庄丽文, 陈动, 等. 红松的地理分布[J]. 东北林业大学学报, 1992, 20(5):40-48.
MA J L, ZHUANG L W, CHEN D, et al. Geographic distribution of Pinus koraiensis in the world[J]. J Northeast For Univ, 1992, 20(5):40-48.
[2]
YU D P, ZHOU L, ZHOU W M, et al. Forest management in northeast China:history,problems,and challenges[J]. Environ Manage, 2011, 48(6):1122-1135.DOI: 10.1007/s00267-011-9633-4.
[3]
张振, 张含国, 莫迟, 等. 红松转录组SSR分析及EST-SSR标记开发[J]. 林业科学, 2015, 51(8):114-120.
ZHANG Z, ZHANG H G, MO C, et al. Transcriptome sequencing analysis and development of EST-SSR markers for Pinus koraiensis[J]. Sci Silvae Sin, 2015, 51(8):114-120.DOI: 10.11707/j.1001-7488.20150815.
[4]
FENG F J, HAN S J, WANG H M. Genetic diversity and genetic differentiation of natural Pinus koraiensis population[J]. J For Res, 2006, 17(1):21-24.DOI: 10.1007/s11676-006-0005-5.
[5]
王欢利, 严灵君, 黄犀, 等. 南京椴群体遗传多样性和遗传结构分析[J]. 南京林业大学学报(自然科学版), 2023, 47(1):145-153.
WANG H L, YAN L J, HUANG X, et al. Genetic diversity and genetic structure of Tilia miqueliana population[J]. J Nanjing For Univ (Nat Sci Ed), 2023, 47(1):145-153. DOI: 10.12302/j.issn.1000-2006.202110049.
[6]
顾万春. 森林遗传资源学概论[M]. 北京: 中国科学技术出版社, 1998.
GU W C. Introduction of forest genetic resource science[M]. Beijing: China Science and Technology Press, 1998.
[7]
尚占环, 姚爱兴. 生物遗传多样性研究方法及其保护措施[J]. 宁夏农学院学报, 2002, 23(1):66-69.
SHANG Z H, YAO A X. Research means of genetic diversity and its protective measures[J]. J Ningxia Agric Coll, 2002, 23(1):66-69. DOI: 10.3969/j.issn.1673-0747.2002.01.021.
[8]
张巍, 王清君, 郭兴. 红松不同种源的遗传多样性分析[J]. 森林工程, 2017, 33(2):17-21.
ZHANG W, WANG Q J, GUO X. Study on the genetic diversity of Pinus koraiensis in different provenances[J]. For Eng, 2017, 33(2):17-21.DOI: 10.16270/j.cnki.slgc.2017.02.004.
[9]
童茜坪, 剡丽梅, 张磊, 等. 红松种子园单株ISSR-PCR遗传多样性分析[J]. 林业科技, 2020, 45(2):17-20.
TONG Q P, YAN L M, ZHANG L, et al. Genetic diversity analysis on indivitual of Pinus koraiensis in seed orchard based on ISSR-PCR[J]. For Sci Technol, 2020, 45(2):17-20.DOI: 10.19750/j.cnki.1001-9499.2020.02.005.
[10]
FRANKEL O H, BROWN A H D. Current plant genetic resources: a critical appraisal[M]. Londen: Oxford & IBH Publishing Co, 1984:3-13.
[11]
VASCONCELOS E S, CRUZ C D, BHERING L L, et al. Strategies for sampling and establishment of core collections[J]. Pesquisa Agropecuaria Brasileira, 2007, 42:507-514.DOI:10.1590/S0100-204X2007000400008.
[12]
李自超, 张洪亮, 曾亚文, 等. 云南地方稻种资源核心种质取样方案研究[J]. 中国农业科学, 2000, 33(5):1-7.
LI Z C, ZHANG H L, ZENG Y W, et al. Study on sampling schemes of core collection of local varieties of rice in Yunnan,China[J]. Sci Agric Sin, 2000, 33(5):1-7.DOI: 10.3321/j.issn:0578-1752.2000.05.001.
[13]
赵冰, 张启翔. 中国蜡梅种质资源核心种质的初步构建[J]. 北京林业大学学报, 2007, 29(S1):16-21.
ZHAO B, ZHANG Q X. Preliminary construction of core germplasm of Chimonanthus praecox germplasm resources in China[J]. J Beijing For Univ, 2007, 29(S1):16-21.DOI: CNKI:SUN:BJLY.0.2007-S1-005.
[14]
LIU M, HU X, WANG X, et al. Constructing a core collection of the medicinal plant Angelica biserrata using genetic and metabolic data[J]. Front Plant Sci, 2020, 11:600249.DOI: 10.3389/fpls.2020.600249.
[15]
BOCCACCI P, ARAMINI M, ORDIDGE M, et al. Comparison of selection methods for the establishment of a core collection using SSR markers for hazelnut (Corylus avellana L.) accessions from European germplasm repositories[J]. Tree Genet Genomes, 2021, 17(6):48.DOI: 10.1007/s11295-021-01526-7.
[16]
YANG H B, LIU Q H, ZHANG R, et al. Genetic diversity of second generation-parental germplasm of Masson pine revealed by SSR markers and establishment of a core germplasm collection[J]. Scand J For Res, 2021, 36(7/8):524-531.DOI: 10.1080/02827581.2021.1981432.
[17]
DUAN H J, CAO S, ZHENG H Q, et al. Genetic characterization of Chinese fir from six provinces in southern China and construction of a core collection[J]. Sci Rep, 2017, 7(1):13814.DOI: 10.1038/s41598-017-13219-0.
[18]
GUO Q, LIU J, LI J K, et al. Genetic diversity and core collection extraction of Robinia pseudoacacia L.germplasm resources based on phenotype,physiology,and genotyping markers[J]. Ind Crops Prod, 2022, 178:114627.DOI: 10.1016/j.indcrop.2022.114627.
[19]
WANG X L, CAO Z L, GAO C J, et al. Strategy for the construction of a core collection for Pinus yunnanensis Franch.to optimize timber based on combined phenotype and molecular marker data[J]. Genet Resour Crop Evol, 2021, 68(8):3219-3240.DOI: 10.1007/s10722-021-01182-9.
[20]
夏德安, 杨书文, 杨传平, 等. 红松种源试验研究(Ⅰ):种源的初步区划[J]. 东北林业大学学报, 1991, 19(S2):122-128.
XIA D A, YANG S W, YANG C P, et al. Experimental study on provenance of Korean pine (Ⅰ): preliminary division of provenance[J]. J Northeast For Univ, 1991, 19(S2):122-128.
[21]
LIEWLAKSANEEYANAWIN C, RITLAND C E, EL-KASSABY Y A, et al. Single-copy,species-transferable microsatellite markers developed from loblolly pine ESTs[J]. Theor Appl Genet, 2004, 109(2):361-369.DOI: 10.1007/s00122-004-1635-7.
[22]
ECHT C S, SAHA S, DEEMER D L, et al. Microsatellite DNA in genomic survey sequences and UniGenes of loblolly pine[J]. Tree Genet Genomes, 2011, 7(4):773-780.DOI: 10.1007/s11295-011-0373-7.
[23]
LEA M V, SYRING J, JENNINGS T, et al. Development of nuclear microsatellite loci for Pinus albicaulis Engelm.(Pinaceae),a conifer of conservation concern[J]. PLoS One, 2018, 13(10):e0205423.DOI: 10.1371/journal.pone.0205423.
[24]
XIANG X Y, ZHANG Z X, WANG Z G, et al. Transcriptome sequencing and development of EST-SSR markers in Pinus dabeshanensis,an endangered conifer endemic to China[J]. Mol Breed, 2015, 35(8):158.DOI: 10.1007/s11032-015-0351-0.
[25]
DONG W L, WANG R N, YAN X H, et al. Characterization of polymorphic microsatellite markers in Pinus armandii (Pinaceae),an endemic conifer species to China[J]. Appl Plant Sci, 2016, 4(10):apps.1600072.DOI: 10.3732/apps.1600072.
[26]
YU J H, CHEN C M, TANG Z H, et al. Isolation and characterization of 13 novel polymorphic microsatellite markers for Pinus koraiensis (Pinaceae)[J]. Am J Bot, 2012, 99(10):e421-e424.DOI: 10.3732/ajb.1200145.
[27]
LI X, LIU X T, WEI J T, et al. Development and transferability of EST-SSR markers for Pinus koraiensis from cold-stressed transcriptome through illumina sequencing[J]. Genes, 2020, 11(5):500.DOI: 10.3390/genes11050500.
[28]
倪州献, 白天道, 蔡恒, 等. 马尾松基因组SSR标记在松属其他树种中的通用性分析[J]. 分子植物育种, 2015, 13(12):2811-2817.
NI Z X, BAI T D, CAI H, et al. The transferability of Pinus massoniana SSR in other Pinus species[J]. Mol Plant Breed, 2015, 13(12):2811-2817.DOI: 10.13271/j.mpb.013.002811.
[29]
DOU J J, ZHOU R C, TANG A J, et al. Development and characterization of nine microsatellites for an endangered tree,Pinus wangii (Pinaceae)[J]. Appl Plant Sci, 2013, 1(2):apps.1200134.DOI: 10.3732/apps.1200134.
[30]
何启平, 陈莹. 校园常见植物叶绿素提取方法比较及其含量测定[J]. 黑龙江农业科学, 2015, 38(10):117-120.
HE Q P, CHEN Y. Comparision on different extaction techniques about chlorophyll and determanation of chlorophyll content of common plants in campus[J]. Heilongjiang Agric Sci, 2015, 38(10):117-120.DOI: 10.11942/j.issn1002-2767.2015.10.0117.
[31]
樊文强, 盖红梅, 孙鑫, 等. SSR数据格式转换软件DataFormater[J]. 分子植物育种, 2016, 14(1):265-270.
FAN W Q, GAI H M, SUN X, et al. Data formater,a software for SSR data formatting to develop population genetics analysis[J]. Mol Plant Breed, 2016, 14(1):265-270.DOI: 10.13271/j.mpb.014.000265.
[32]
LIU K J, MUSE S V. Power marker:an integrated analysis environment for genetic marker analysis[J]. Bioinformatics, 2005, 21(9):2128-2129.DOI: 10.1093/bioinformatics/bti282.
[33]
PEAKALL R, SMOUSE P E. GenAlEx 6.5:genetic analysis in Excel.Population genetic software for teaching and research:an update[J]. Bioinformatics, 2012, 28(19):2537-2539.DOI: 10.1093/bioinformatics/bts460.
[34]
TAMURA K, PETERSON D, PETERSON N, et al. MEGA5:molecular evolutionary genetics analysis using maximum likelihood,evolutionary distance,and maximum parsimony methods[J]. Mol Biol Evol, 2011, 28(10):2731-2739.DOI: 10.1093/molbev/msr121.
[35]
EVANNO G, REGNAUT S, GOUDET J. Detecting the number of clusters of individuals using the software STRUCTURE:a simulation study[J]. Mol Ecol, 2005, 14(8):2611-2620.DOI: 10.1111/j.1365-294X.2005.02553.x.
[36]
徐存宝, 刘滨凡, 刘维斌. 天然红松林结构规律的探讨[J]. 林业科技, 1991, 16(4):17-19.
XU C B, LIU B F, LIU W B. Discussion on structural law of natural Korean pine forest[J]. For Sci Technol, 1991, 16(4):17-19.
[37]
郭文丽, 李义良, 赵奋成, 等. 湿加松无性系表型遗传多样性研究[J]. 植物研究, 2019, 39(2):259-266.
GUO W L, LI Y L, ZHAO F C, et al. Phenotypic genetic diversity of Pinus elliottii × P.caribaea Morelet var. hondurensis clones[J]. Bull Bot Res, 2019, 39(2):259-266.DOI: 10.7525/j.issn.1673-5102.2019.02.012.
[38]
陈存, 丁昌俊, 黄秦军, 等. 美洲黑杨表型核心种质库构建[J]. 林业科学研究, 2021, 34(2):1-11.
CHEN C, DING C J, HUANG Q J, et al. Construction of phenotypic core collection of Populus deltoides[J]. For Res, 2021, 34(2):1-11.DOI: 10.13275/j.cnki.lykxyj.2021.02.001.
[39]
贾丙瑞, 周广胜, 刘永志, 等. 中国天然林凋落物量的空间分布及其影响因子分析[J]. 中国科学:生命科学, 2016, 46(11):1304-1311.
JIA B R, ZHOU G S, LIU Y Z, et al. Spatial pattern and environmental controls of annual litterfall production in natural forest ecosystems in China[J]. Sci Sin Vit, 2016, 46(11):1304-1311. DOI:10.1360/N052015-00319.
[40]
徐海明. 种质资源核心库构建方法的研究及其应用[D]. 杭州: 浙江大学, 2005.
XU H M. Study on methods of constructing core collection of germplasm and their applications in core construction[D]. Hangzhou: Zhejiang University, 2005.
[41]
HU J, ZHU J, XU H M. Methods of constructing core collections by stepwise clustering with three sampling strategies based on the genotypic values of crops[J]. Theor Appl Genet, 2000, 101(1):264-268.DOI: 10.1007/s001220051478.
[42]
冯富娟, 隋心, 张冬东. 不同种源红松遗传多样性的研究[J]. 林业科技, 2008, 33(1):1-4.
FENG F J, SUI X, ZHANG D D. Studies on the genetic diversity of Pinus koraiensis in different provenance[J]. For Sci Technol, 2008, 33(1):1-4.DOI: 10.3969/j.issn.1001-9499.2008.01.001.
[43]
张亚红, 贾会霞, 王志彬, 等. 滇杨种群遗传多样性与遗传结构[J]. 生物多样性, 2019, 27(4):355-365.
ZHANG Y H, JIA H X, WANG Z B, et al. Genetic diversity and population structure of Populus yunnanensis[J]. Biodivers Sci, 2019, 27(4):355-365.DOI: 10.17520/biods.2019016.
[44]
CHEN S Y, ZHAO W S, WANG J. Genetic diversity and genetic differentiation of natural populations of Pinus kesiya var. langbinanensis[J]. J For Res, 2002, 13(4):273-276.DOI: 10.1007/BF02860090.
[45]
邵丹, 裴赢, 张恒庆. 凉水国家自然保护区天然红松种群遗传多样性在时间尺度上变化的cpSSR分析[J]. 植物研究, 2007, 27(4):473-477.
SHAO D, PEI Y, ZHANG H Q. cpSSR analysis of variation of genetic diversity in temporal dimension of natural population of Pinus koraiensis in Liangshui National Nature Reserve[J]. Bull Bot Res, 2007, 27(4):473-477.DOI: 10.3969/j.issn.1673-5102.2007.04.020.
[46]
李斌, 顾万春, 卢宝明. 白皮松天然群体种实性状表型多样性研究[J]. 生物多样性, 2002, 10(2):181-188.
LI B, GU W C, LU B M. A study on phenotypic diversity of seeds and cones characteristics in Pinus bungeana[J]. Biodivers Sci, 2002, 10(2):181-188.DOI: 10.3321/j.issn:1005-0094.2002.02.008.
[47]
LOVELESS M D, HAMRICK J L. Ecological determinants of genetic structure in plant populations[J]. Annu Rev Ecol Syst, 1984, 15:65-95.DOI: 10.1146/annurev.es.15.110184.000433.
[48]
BROWN A H D. Plant population genetics,breeding,and genetic resources[M]. Sunderland Mass: Sinauer Associates, 1990.
[49]
FRANKHAM R, BALLOU J D, BRISCOE D A, et al. Introduction to conservation genetics:the broader context:population viability analysis (PVA)[M]. Cambridge: Cambridge University Press, 2002.
[50]
陈向向, 盖中帅, 翟军团, 等. 中国西北地区天然胡杨群体遗传多样性及核心保护单元的构建[J]. 生物多样性, 2021, 29(12):1638-1649.
CHEN X X, GAI Z S, ZHAI J T, et al. Genetic diversity and construction of core conservation units of the natural populations of Populus euphratica in northwest China[J]. Biodivers Sci, 2021, 29(12):1638-1649.DOI: 10.17520/biods.2021249.
[51]
陈存, 丁昌俊, 张静, 等. 美洲黑杨群体结构分析及核心种质库构建[J]. 林业科学, 2020, 56(9):67-76.
CHEN C, DING C J, ZHANG J, et al. Population structure analysis and core collection construction of Populus deltoides[J]. Sci Silvae Sin, 2020, 56(9):67-76.DOI: 10.11707/j.1001-7488.20200908.
[52]
徐益, 张列梅, 郭艳春, 等. 黄麻核心种质的遴选[J]. 作物学报, 2019, 45(11):1672-1681.
XU Y, ZHANG L M, GUO Y C, et al. Core collection screening of a germplasm population in jute(Corchorus spp.)[J]. Acta Agron Sin, 2019, 45(11):1672-1681.DOI: 10.3724/SP.J.1006.2019.94008.
[53]
BELAJ A, DEL CARMEN DOMINGUEZ-GARCÍA M, ATIENZA S G, et al. Developing a core collection of olive (Olea europaea L.) based on molecular markers (DArTs,SSRs,SNPs) and agronomic traits[J]. Tree Genet Genomes, 2012, 8(2):365-378.DOI: 10.1007/s11295-011-0447-6.
[54]
ZHANG Y X, ZHANG X R, CHE Z, et al. Genetic diversity assessment of sesame core collection in China by phenotype and molecular markers and extraction of a mini-core collection[J]. BMC Genet, 2012, 13:102.DOI: 10.1186/1471-2156-13-102.
[55]
DZIALUK A, CHYBICKI I, GOUT R, et al. No reduction in genetic diversity of Swiss stone pine (Pinus cembra L.) in Tatra Mountains despite high fragmentation and small population size[J]. Conserv Genet, 2014, 15(6):1433-1445.DOI: 10.1007/s10592-014-0628-6.
[56]
武星彤, 陈璐, 王敏求, 等. 丹霞梧桐群体遗传结构及其遗传分化[J]. 生物多样性, 2018, 26(11):1168-1179.
WU X T, CHEN L, WANG M Q, et al. Population structure and genetic divergence in Firmiana danxiaensis[J]. Biodivers Sci, 2018, 26(11):1168-1179.DOI: 10.17520/biods.2018223.
[57]
TIJERINO A, KORPELAINEN H. Molecular characterization of Nicaraguan Pinus tecunumanii Schw.ex Eguiluz et Perry populations for in situ conservation[J]. Trees, 2014, 28(4):1249-1253.DOI: 10.1007/s00468-014-1005-2.
[58]
吕锋, 解孝满, 韩彪, 等. 基于SSR标记的麻栎天然群体遗传多样性分析[J]. 南京林业大学学报(自然科学版), 2022, 46(3):109-116.
LYU F, XIE X M, HAN B, et al. Genetic diversity analyses of Quercus acutissima based on SSR markers[J]. J Nanjing For Univ (Nat Sci Ed), 2022, 46(3):109-116.DOI: 10.12302/j.issn.1000-2006.202101025.
PDF(2522 KB)

Accesses

Citation

Detail

Sections
Recommended
The full text is translated into English by AI, aiming to facilitate reading and comprehension. The core content is subject to the explanation in Chinese.

/