Diffuse radiation environment of regeneration seedlings and saplings under a broadleaved-Korean pine forest

DU Xin, DONG Xue, GU Huiyan, CHEN Xiangwei

JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2024, Vol. 48 ›› Issue (6) : 145-156.

PDF(10523 KB)
PDF(10523 KB)
JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2024, Vol. 48 ›› Issue (6) : 145-156. DOI: 10.12302/j.issn.1000-2006.202305007

Diffuse radiation environment of regeneration seedlings and saplings under a broadleaved-Korean pine forest

Author information +
History +

Abstract

【Objective】This study aims to determine the light intensity requirements for the regeneration of seedlings and saplings in mixed broadleaved-Korean pine (Pinus koraiensis) forests. Additionally, it seeks to investigate how the regeneration of different tree species responds to variations in light intensity. This research guides the scientific management and conservation efforts of broadleaved-Korean pine forests and their ecosystems.【Method】The research focused on nine common tree species: Pinus koraiensis, Picea koraiensis, Abies nephrolepis, Ulmus davidiana, Acer pictum, Acer tegmentosum, Acer ukurunduense, Tilia amurensis, and Fraxinus mandshurica, across four plots in the Liangshui National Nature Reserve. The weighted inside-boundary neighbor diffuse shading degree (WINDSD) was computed for the planting habitats of each seedling and sapling. The mean, standard deviation, and distribution tendency degree of WINDSD were calculated for the planting habitats of each tree species’ seedlings and saplings. The Mann-Whitney U test was employed to identify significant differences in WINDSD among the planting habitats of each tree species and uniformly distribute sample points beneath the broadleaved-Korean pine forest canopy. The analysis is extended to compare the differences in WINDSD among the planting habitats of seedlings and saplings for each tree species. Additionally, the Monte Carlo method was utilized to ascertain significant differences in the distribution tendency degree of WINDSD between the planting habitats of seedlings and saplings for various tree species populations and a random distribution population of equivalent size for each tree species.【Result】The analysis revealed that the mean and standard deviation of WINDSD for the uniformly distributed sample points of the broadleaved-Korean pine forest were 0.538 and 0.213, respectively, with a distribution tendency degree of 1.069. Among the seedlings and saplings of the nine tree species studied, only Ulmus japonica and Fraxinus mandshurica saplings exhibited a lower average value and distribution tendency degree of WINDSD compared to the uniformly distributed sample points in the forest. The analysis also indicated that the diffuse radiation intensity within the saplings’ planting habitats for Pinus koraiensis, Picea koraiensis, Abies nephrolepis, and Tilia davidiana was weaker compared to those designated for seedling regeneration. The Monte Carlo and Mann-Whitney U tests highlighted that the WINDSD in the planting habitats of seedlings for Pinus koraiensis, Picea koraiensis, Abies nephrolepis, Ulmus davidiana, Acer pictum, Acer tegmentosum, and Fraxinus mandshurica was significantly higher than that of the uniformly distributed sample points. In contrast, the WINDSD values for the planting habitats of Acer ukurunduense and Tilia amurensis seedlings did not significantly differ from those of the uniformly distributed sample points in the forest. For saplings, the WINDSD values in the planting habitats of Pinus koraiensis, Picea koraiensis, and Abies nephrolepis were significantly higher compared to the uniformly distributed sample points, whereas those for the saplings of other species did not significantly differ. Additionally, the Mann-Whitney U test indicated significant differences in WINDSD between the planting habitats of saplings and seedlings for Ulmus japonica and Acer mono (P<0.05).【Conclusion】The findings suggest that seedlings and saplings of the primary tree species in the broadleaved-Korean pine forest are usually found in areas with weaker light on the forest floor. Compared to seedlings, saplings tend to establish in habitats with slightly stronger light intensity. Different tree species exhibit varied responses to light intensity variations under the forest canopy. The differences in light intensity between habitats for seedlings and saplings are not pronounced for Pinus koraiensis, Picea koraiensis, and Abies nephrolepis, whereas the light intensity in the sapling habitats of Ulmus davidiana, Acer pictum, and Acer tegmentosum is significantly higher than in their seedling regeneration areas.

Key words

broadleaved-Korean pine forest / natural forest regeneration / light intensity / weighted inside-boundary neighbor diffuse shading degree (WINDSD) / Monte Carlo test

Cite this article

Download Citations
DU Xin , DONG Xue , GU Huiyan , et al. Diffuse radiation environment of regeneration seedlings and saplings under a broadleaved-Korean pine forest[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2024, 48(6): 145-156 https://doi.org/10.12302/j.issn.1000-2006.202305007

References

[1]
王新程. 环境科学大辞典[M].2版. 北京: 中国环境科学出版社, 2008.
WANG X C. Environmental science dictionary[M].2nd ed. Beijing: China Environmental Science Press, 2008.
[2]
黄一鑫, 程艳霞. 森林光环境对4种乔木幼树光合和光谱反射特性的影响[J]. 生态学报, 2022, 42(22):9121-9129.
HUANG Y X, CHENG Y X. Photosynthetic characteristics and spectral reflectance characteristics of four natural tree saplings under forest light environment[J]. Acta Ecol Sin, 2022, 42(22):9121-9129.DOI: 10.5846/stxb202105171289.
[3]
刘子宣, 贾存, 秦志强, 等. 华北落叶松林下光环境对白扦幼树生长的影响[J]. 南京林业大学学报(自然科学版), 2020, 44(6):111-117.
LIU Z X, JIA C, QIN Z Q, et al. Effects of light conditions on the growth of understory Picea meyeri sapling in Larix principis-rupprechtii forest[J]. J Nanjing For Univ (Nat Sci Ed), 2020, 44(6):111-117.DOI: 10.3969/j.issn.1000-2006.201909032.
[4]
WILKENS J F, WAGNER S. Empirical survival model for European beech (Fagus sylvatica L.) seedlings in response to interactive resource gradients and (a-) biotic conditions within an experimental canopy gap study[J]. For Ecol Manag, 2021,499:119627.DOI: 10.1016/j.foreco.2021.119627.
[5]
XUE W X, GUO Q J, ZHU J, et al. Research on the effects of light intensity and seeding density on the seed germination and seedling growth of Liriodendron chinense[J]. J Agric Chem Environ, 2022, 11(1):24-41.DOI: 10.4236/jacen.2022.111003.
[6]
RITTER E, DALSGAARD L, EINHORN K S. Light,temperature and soil moisture regimes following gap formation in a semi-natural beech-dominated forest in Denmark[J]. For Ecol Manag, 2005, 206(1/2/3):15-33.DOI: 10.1016/j.foreco.2004.08.011.
[7]
COATES K D, BURTON P J. A gap-based approach for development of silvicultural systems to address ecosystem management objectives[J]. For Ecol Manag, 1997, 99(3):337-354.DOI: 10.1016/S0378-1127(97)00113-8.
[8]
ROUVINEN S, KOUKI J. Tree regeneration in artificial canopy gaps established for restoring natural structural variability in a Scots pine stand[J]. Silva Fenn, 2011, 45(5):1079-1091.DOI: 10.14214/sf.88.
[9]
SCHEIRE A. Functional traits of lianas: trait coordination and how they shape species light and nutrient niches[D]. Wageningen: Wageningen University, 2019.
[10]
LONG W X, ZANG R G, SCHAMP B S, et al. Within and among-species variation in specific leaf area drive community assembly in a tropical cloud forest[J]. Oecologia, 2011, 167(4):1103-1113.DOI: 10.1007/s00442-011-2050-9.
[11]
LAURANS M, MARTIN O, NICOLINI E, et al. Functional traits and their plasticity predict tropical trees regeneration niche even among species with intermediate light requirements[J]. J Ecol, 2012, 100(6):1440-1452.DOI: 10.1111/j.1365-2745.2012.02007.x.
[12]
GROGAN J, LANDIS R M, ASHTON M S, et al. Growth response by big-leaf mahogany (Swietenia macrophylla) advance seedling regeneration to overhead canopy release in southeast ParáBrazil[J]. For Ecol Manag, 2005, 204(2/3):399-412.DOI: 10.1016/j.foreco.2004.09.013.
[13]
MUHAMED H, TOUZARD B, LE BAGOUSSE-PINGUET Y, et al. The role of biotic interactions for the early establishment of oak seedlings in coastal dune forest communities[J]. For Ecol Manag, 2013, 297:67-74.DOI: 10.1016/j.foreco.2013.02.023.
[14]
刘从, 田甜, 李珊, 等. 中国木本植物幼苗生长对光照强度的响应[J]. 生态学报, 2018, 38(2):518-527.
LIU C, TIAN T, LI S, et al. Growth response of Chinese woody plant seedlings to different light intensities[J]. Acta Ecol Sin, 2018, 38(2):518-527.DOI: 10.5846/stxb201611012221.
[15]
徐化成. 中国红松天然林[M]. 北京: 中国林业出版社, 2001.
XU H C. Natural forests of Pinus koraiensis in China[M]. Beijing: China Forestry Publishing House, 2001.
[16]
吴刚. 长白山红松阔叶混交林林冠空隙树种更新动态规律的研究[J]. 应用生态学报, 1998, 9(5):2-5.
WU G. Regeneration dynamics of tree species in gaps of Korean pine broad leaved mixed forest in Changbai Mountains[J]. Chin J Appl Ecol, 1998, 9(5):2-5.DOI: 10.1088/0256-307X/15/12/025.
[17]
国庆喜. 阔叶红松林林冠斑块特征及其与林木更新的关系[J]. 应用生态学报, 2002, 13(12):1541-1543.
GUO Q X. Characteristics of canopy patches related to natural regeneration of broad-leaved Korean pine forest[J]. Chin J Appl Ecol, 2002, 13(12):1541-1543.
[18]
刘妍妍, 金光泽, 李凤日. 典型阔叶红松林林隙对幼苗建立的影响[J]. 科学通报, 2014, 59(24):2396-2406.
LIU Y Y, JIN G Z, LI F R. Influence of forest gaps on seedling establishment in a mixed broadleaved-Korean pine(Pinus koraiensis) forest in Xiao Hinggan Mountains[J]. Chin Sci Bull, 2014, 59(24):2396-2406.
[19]
JIN G Z, TIAN Y, ZHAO F, et al. The pattern of natural regeneration by canopy gap size in the mixed broadleaved-Korean pine forest of Xiaoxing’an Mountains, China[J]. J Korean For Soc, 2007, 96: 227-234.
[20]
JIN G Z, LIU Y Y, LIU S, et al. Effect of gaps on species diversity in the naturally regenerated mixed broadleaved-Korean pine forest of the Xiaoxing’an Mountains,China[J]. J Ecol Environ, 2007, 30(4):325-330.DOI: 10.5141/jefb.2007.30.4.325.
[21]
董莉莉, 张慧东, 毛沂新, 等. 间伐对红松Pinus koraiensis针阔混交林冠层结构及林下植被的影响[J]. 沈阳农业大学学报, 2017, 48(2):159-165.
DONG L L, ZHANG H D, MAO Y X, et al. Influence of thinning on canopy structure and understory vegetation of coniferous-broad leaved Pinus koraiensis mixed forest[J]. J Shenyang Agric Univ, 2017, 48(2):159-165.
[22]
FRAZER G W, CANHAM C D, LERTZMAN K P. Gap light analyzer (GLA) Version 2.0: users manual and program documentation[R]. Vancouver: Simon Fraser University and the Institute of Ecosystem Studies, 1999.
[23]
刘赫男, 张洪玲, 朱红蕊. 1961—2010年黑龙江省太阳能资源特征分析与评估[J]. 气象与环境学报, 2013, 29(4):89-93.
LIU H N, ZHANG H L, ZHU H R. Analysis and assessment of solar energy resource in Heilongjiang Province from 1961 to 2010[J]. J Meteor Environ, 2013, 29(4):89-93.DOI: 10.3969/j.issn.1673-503X.2013.04.014.
[24]
杜昕, 董雪, 谷会岩, 等. 基于易测林木因子的林下太阳辐射模拟(Ⅰ)——林下散射辐射模拟[J/OL]. 南京林业大学学报(自然科学版),[2024-06-03]. https://link.cnki.net/urlid/32.1161.s.20240603.1546.002.
DU X, DONG X, GU H Y, et al. Simulation of understory solar radiation based on easily measurable tree factors (Ⅰ): understory diffuse radiation simulation[J/OL]. J Nanjing For Univ (Nat Sci Ed),[2024-06-03]. https://link.cnki.net/urlid/32.1161.s.20240603.1546.002.
[25]
罗耀华, 陈庆诚, 张鹏云. 兴隆山阴暗针叶林空间格局及其利用光能的对策[J]. 生态学报, 1984, 4(1):10-20.
LUO Y H, CHEN Q C, ZHANG P Y. The spatial pattern of coniferous forest in Xinglongshan Mountain and its strategies in using sun light energy[J]. Acta Ecol Sin, 1984, 4(1):10-20.
[26]
魏殿生. 全国森林培育技术标准汇编:造林经营卷[M]. 北京: 中国标准出版社, 2003.
[27]
惠刚盈. 结构化森林经营原理[M]. 北京: 中国林业出版社, 2016.
HUI G Y. Principles of structure-based forest management[M]. Beijing: China Forestry Publishing House, 2016.
[28]
杜昕, 董雪, 谷会岩, 等. 基于分层 Voronoi 图的阔叶红松林叶面积指数的垂直与短程水平空间分布研究[J/OL]. 南京林业大学学报(自然科学版),[2023-11-17]. https://link.cnki.net/urlid/32.1161.S.20231117.0856.002.
DU X, DONG X, GU H Y, et al. A study of the vertical and short-range horizontal spatial distribution of leaf area index in broadleaved-Korean pine forest based on stratified Voronoi diagrams[J/OL]. J Nanjing For Univ (Nat Sci Ed),[2023-11-17]. https://link.cnki.net/urlid/32.1161.S.20231117.0856.002.
[29]
王献溥. 小群聚(小群落)的概念及其在研究针叶、落叶阔叶混交林结构时的应用[J]. 植物生态学与地植物学丛刊, 1963(S1):51-68.
WANG X P. The concept of small community and its application in studying the structure of coniferous and deciduous broad-leaved mixed forest[J]. Chin J Plant Ecol, 1963(S1):51-68.
[30]
孙龙, 国庆喜. 生态学基础[M]. 北京: 中国建材工业出版社, 2013.
SUN L, GUO Q X. Ecological basis[M]. Beijing: China Building Material Industry Publishing House, 2013.
[31]
张炜平, 王根轩. 植物邻体间的正相互作用[J]. 生态学报, 2010, 30(19):5371-5380.
ZHANG W P, WANG G X. Positive interactions in plant communities[J]. Acta Ecol Sin, 2010, 30(19):5371-5380.
[32]
王丽霞. 阔叶红松混交林林隙大小、土壤水分以及光照对植物的影响[D]. 哈尔滨: 东北林业大学, 2013.
WANG L X. Effects of gap size,soil moisture and light on plants in broad-leaved Korean pine mixed forest[D]. Harbin: Northeast Forestry University, 2013.
[33]
白淑菊, 陶大立, 靳月华. 长白山常绿针叶树越冬期间光合能力的抑制[J]. 应用生态学报, 1995, 6(2):138-142.
BAI S J, TAO D L, JIN Y H. Inhibition of photosynthetic capacity of evergreen conifers in Changbai Mountain during overwintering[J]. Chin J Appl Ecol, 1995, 6(2):139-142.
[34]
田悦颖. 小兴安岭阔叶红松林林隙特征及其更新研究[D]. 哈尔滨: 东北林业大学, 2007.
TIAN Y Y. Gap characteristics and regeneration of broad-leaved Korean pine forest in Xiaoxing’an Mountains[D]. Harbin: Northeast Forestry University, 2007.
[35]
ZHANG X J, WANG S L. Joint control of plant ecological strategy by climate,regeneration mode,and ontogeny in northeastern Chinese forests[J]. Ecol Evol, 2021, 11(11):6703-6715.DOI: 10.1002/ece3.7522.
[36]
金明月. 季节及树龄对东北阔叶树种叶性状及其权衡的影响[D]. 哈尔滨: 东北林业大学, 2019.
JIN M Y. Effects of season and tree age on leaf characteristics and trade-offs of broad-leaved trees in northeast China[D]. Harbin: Northeast Forestry University, 2019.DOI: 10.27009/d.cnki.gdblu.2019.000348.
[37]
孙金伟, 姚付启, 张振华. 红松和紫椴叶片暗呼吸及其光抑制性在幼、成树间的差异[J]. 应用生态学报, 2019, 30(5):1463-1468.
SUN J W, YAO F Q, ZHANG Z H. Differences of leaf dark respiration and light inhibition between saplings and mature trees of Pinus koraiensis and Tilia amurensis[J]. Chin J Appl Ecol, 2019, 30(5):1463-1468.DOI: 10.13287/j.1001-9332.201905.008.
[38]
王树力, 武敬辉, 史永纯. 红松种群天然更新及幼年生长与林分结构关系的研究[J]. 吉林林学院学报, 1998(1):8-12.
WANG S L, WU J H, SHI Y C. Study on the relationship between natural regeneration,juvenile growth and stand structure of Korean pine population[J]. J Jilin For Univ, 1998(1):8-12.
[39]
贺丹妮, 杨华, 温静, 等. 长白山云冷杉针阔混交林不同林隙下幼苗幼树密度及空间分布[J]. 应用生态学报, 2020, 31(6):1916-1922.
HE D N, YANG H, WEN J, et al. Density and spatial distribution of seedlings and saplings in different gap sizes of a spruce-fir mixed stand in Changbai Mountains,China[J]. Chin J Appl Ecol, 2020, 31(6):1916-1922.DOI: 10.13287/j.1001-9332.202006.004.
[40]
周光. 林下红松生存策略与季节光环境驱动机制[D]. 北京: 北京林业大学, 2019.
ZHOU G. Survival strategy of Korean pine under forest and driving mechanism of seasonal light environment[D]. Beijing: Beijing Forestry University, 2019.DOI: 10.26949/d.cnki.gblyu.2019.000156.
[41]
王乾. 川西亚高山森林生态系统辐射传输研究[D]. 成都: 中国科学院研究生院(成都生物研究所), 2006.
WANG Q. Study on radiation transmission of alpine forest ecosystem in western Sichuan[D]. Chengdu: Chengdu Institute of Biology,Chinese Academy of Sciences, 2006.
[42]
李秋果, 卞英捷, 梁照, 等. 匍匐翦股颖品种(系)的坪用性状与耐热性评价[J]. 南京农业大学学报, 2023, 46(6):1096-1106.
LI Q G, BIAN Y J, LIANG Z, et al. Evaluation of turf characteristics and heat tolerance of creeping bentgrass cultivars(strains)[J]. J Nanjing Agric Univ, 2023, 46(6):1096-1106.DOI: 10.7685/jnau.202210010.
[43]
ZENNER E K, PECK J E, HOBI M L. Development phase convergence across scale in a primeval European beech (Fagus sylvatica L.) forest[J]. For Ecol Manag, 2020,460:117889.DOI: 10.1016/j.foreco.2020.117889.
[44]
王伯荪. 植被的镶嵌体系[J]. 生态科学, 1998, 17(2):3-9.
WANG B S. Mosaic system of vegetation[J]. Ecol Sci, 1998, 17(2):3-9.
[45]
梁星云. 长白山阔叶红松林演替系列主要树种叶片功能性状与化学计量学研究[D]. 北京: 中国林业科学研究院, 2017.
LIANG X Y. Study on leaf functional characters and chemometrics of main tree species in succession series of broad-leaved Korean pine forest in Changbai Mountain[D]. Beijing: Chinese Academy of Forestry, 2017.
PDF(10523 KB)

Accesses

Citation

Detail

Sections
Recommended
The full text is translated into English by AI, aiming to facilitate reading and comprehension. The core content is subject to the explanation in Chinese.

/