
Chlorophyll content estimation based on chlorophyll fluorescence
WANG Wanjun, YU Ying, YANG Xiguang
JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2024, Vol. 48 ›› Issue (6) : 157-165.
Chlorophyll content estimation based on chlorophyll fluorescence
【Objective】Chlorophyll is a crucial indicator of plant physiological status. This study explores methods for estimating leaf chlorophyll content using measured chlorophyll fluorescence and Fluspect-B model simulation data.【Method】The study analyzes the measured data of chlorophyll fluorescence spectrum and chlorophyll content of leaves at various canopy heights of 11 typical tree species in Maoershan Forest Farm. Additionally, it utilizes a database that simulates the relationship between chlorophyll fluorescence spectrum and chlorophyll content across different tree species. Statistical models are developed using multiple linear regression, artificial neural networks, and random forest modeling techniques based on the measured data. A hybrid model that integrates simulated data and a hybrid model combining measured and simulated data are employed to estimate leaf chlorophyll content. Additionally, the distribution characteristics of leaf chlorophyll content across different tree species and canopy heights are analyzed.【Result】Among the statistical models, random forest exhibits the highest effectiveness, achieving an estimation accuracy of coefficient of determination (R2) was 0.830 5 and root mean square error (RMSE) was 7.109 8 for leaf chlorophyll content (μg/cm2). The hybrid model incorporating both measured and simulated data demonstrates superior accuracy compared to the statistical models, yielding R2 of 0.913 3 and RMSE of 6.374 9 μg/cm2, respectively. The fitting accuracy for chlorophyll content of broad-leaved trees generally surpasses that of coniferous trees, particularly for upper leaf datasets at different canopy positions, which show better fitting effects than middle and lower layers.【Conclusion】The mixed model utilizing both measured and simulated data outperforms the purely statistical model based only on measured data. The mixed model exhibits good fitting accuracy, enabling precise estimation of chlorophyll content. The method based on chlorophyll fluorescence spectrum data proves viable for estimating forest vegetation chlorophyll content, laying a foundational dataset for large-scale chlorophyll content estimation and forest ecosystem carbon sink research.
chlorophyll fluorescence / chlorophyll content / hybrid models / remote sensing inversion model / forest vegetation / carbon sink estimation
[1] |
王邵军, 阮宏华. 全球变化背景下森林生态系统碳循环及其管理[J]. 南京林业大学学报(自然科学版), 2011, 35(2):113-116.
|
[2] |
邹晓明, 王国兵, 葛之葳, 等. 林业碳汇提升的主要原理和途径[J]. 南京林业大学学报(自然科学版), 2022, 46(6):167-176.
|
[3] |
李建贵, 黄俊华, 王强, 等. 梭梭叶内激素与渗透调节物质对高温胁迫的响应[J]. 南京林业大学学报(自然科学版), 2005, 29(6):45-48.
|
[4] |
|
[5] |
|
[6] |
刘良云, 张永江, 王纪华, 等. 利用夫琅和费暗线探测自然光条件下的植被光合作用荧光研究[J]. 遥感学报, 2006, 10(1):130-137.
|
[7] |
|
[8] |
|
[9] |
张永江, 刘良云, 侯名语, 等. 植物叶绿素荧光遥感研究进展[J]. 遥感学报, 2009, 13(5):963-978.
|
[10] |
|
[11] |
|
[12] |
纪梦豪, 唐伯惠, 李召良. 太阳诱导叶绿素荧光的卫星遥感反演方法研究进展[J]. 遥感技术与应用, 2019, 34(3):455-466.
|
[13] |
杨曦光, 范文义, 于颖. 森林叶绿素含量的高光谱遥感估算模型的建立[J]. 森林工程, 2010, 26(2):8-11.
|
[14] |
陈思媛, 竞霞, 董莹莹, 等. 基于日光诱导叶绿素荧光与反射率光谱的小麦条锈病探测研究[J]. 遥感技术与应用, 2019, 34(3):511-520.
|
[15] |
|
[16] |
印玉明, 王永清, 马春晨, 等. 利用日光诱导叶绿素荧光监测水稻叶片叶绿素含量[J]. 农业工程学报, 2021, 37(12):169-180.
|
[17] |
|
[18] |
|
[19] |
王立冬, 陈艳艳, 汤行昊, 等. 3种珍贵树种幼苗光合特性及日进程研究[J]. 山地农业生物学报, 2022, 41(4):8-17.
|
[20] |
殷诗韵. 基于无人机多源遥感的银杏人工林冠层色素含量三维分布估测[D]. 南京: 南京林业大学, 2022.
|
[21] |
王念一, 于丰华, 许童羽, 等. 基于机器学习的粳稻叶片叶绿素含量高光谱反演建模[J]. 浙江农业学报, 2020, 32(2):359-366.
|
[22] |
|
[23] |
|
[24] |
范文义, 张海玉, 于颖, 等. 三种森林生物量估测模型的比较分析[J]. 植物生态学报, 2011, 35(4):402-410.
|
[25] |
|
[26] |
|
[27] |
宋晓东, 江洪, 余树全, 等. 亚热带典型常绿阔叶树种叶片叶绿素含量与其高光谱特征间的关系[J]. 生态学报, 2008, 28(5):1959-1963.
|
[28] |
谷云鹏, 董灵波, 刘兆刚, 等. 近40年帽儿山林场森林景观格局的动态变化及影响因素[J]. 中南林业科技大学学报, 2023, 43(5):73-85.
|
/
〈 |
|
〉 |