An analysis of the spatial and temporal correlation effects of forestry labor productivity and its influencing factors in China

LIU Yandi, ZHANG Cheng, SUN Zhe, LYU Jiehua

JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2024, Vol. 48 ›› Issue (6) : 229-238.

PDF(1843 KB)
PDF(1843 KB)
JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2024, Vol. 48 ›› Issue (6) : 229-238. DOI: 10.12302/j.issn.1000-2006.202305026

An analysis of the spatial and temporal correlation effects of forestry labor productivity and its influencing factors in China

Author information +
History +

Abstract

【Objective】This study aims to investigate the spatio-temporal correlation patterns of forestry labor productivity in China, examine the factors influencing it and their spillover effects, and propose actionable measures to boost forestry labor productivity.【Method】Using the panel data of 31 provinces (including municipalities and autonomous regions) in mainland China from 2010 to 2020, the study employed univariate and bivariate Moran indices to test the spatio-temporal correlation characteristics of regional forestry labor productivity. Based on the findings, four models were established and compared: no spatio-temporal effect, temporal effect, spatial effect, and spatio-temporal effect. Ultimately, a dynamic spatial panel model was selected to analyze the factors driving labor productivity and decompose the spatio-temporal effects.【Result】(1) There were cumulative circular time effects and positive spatio-temporal interaction effects on regional forestry labor productivity in China. (2) The improvement of local forest land labor ratio, industrial agglomeration level, industrial structure optimization, labor remuneration, technological progress, pure technical efficiency and scale efficiency had contributed to local forestry labor productivity, among which the contribution rates of forest land labor ratio and labor remuneration were the highest. (3) The improvement of capital labor ratio and labor remuneration had negative spillover effects on neighboring forestry labor productivity, while the improvement of technological progress and scale efficiency had positive spillover effects. (4) Except for the capital labor ratio, which was insignificant, the long-term effects of other factors were in the same direction as their short-term effects, and their average degree of influence was 2.368 times that of the short-term effects.【Conclusion】To improve forestry labor productivity, policymakers should consider the local effects and spatial spillover effects of each factor and carefully weigh the effects of various factors while taking into account the long-term effects of policy measures, in order to make reasonable decisions.

Key words

forestry labor productivity / spatio-temporal effects / Moran index / dynamic spatial panel model

Cite this article

Download Citations
LIU Yandi , ZHANG Cheng , SUN Zhe , et al. An analysis of the spatial and temporal correlation effects of forestry labor productivity and its influencing factors in China[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2024, 48(6): 229-238 https://doi.org/10.12302/j.issn.1000-2006.202305026

References

[1]
宁攸凉, 李岩, 马一博, 等. 我国林业产业发展面临的挑战与对策[J]. 世界林业研究, 2021, 34(4):67-71.
NING Y L, LI Y, MA Y B, et al. Challenges and countermeasures of forestry industry development in China[J]. World For Res, 2021, 34(4):67-71.DOI: 10.13348/j.cnki.sjlyyj.2021.0022.y.
[2]
NING Y L, LIU Z, NING Z K, et al. Measuring eco-efficiency of state-owned forestry enterprises in northeast China[J]. Forests, 2018, 9(8):455.DOI: 10.3390/f9080455.
[3]
NING Y L, YU J N, ZHANG H, et al. Exploring the sources of labor productivity growth and convergence among state-owned forestry enterprises in northeast China[J]. For Prod J, 2020, 70(3):249-255.DOI: 10.13073/fpj-d-19-00024.
[4]
夏永红, 沈文星, 李存芳. 木材加工产业集聚对劳动生产率影响的空间效应分解:基于1998—2016年省际空间面板数据的实证研究[J]. 林业科学, 2019, 55(9):157-165.
XIA Y H, SHEN W X, LI C F. The spatial effects decomposition of industrial agglomeration on labor productivity in the wood processing industry:an empirical study based on 1998-2016 spatial panel data[J]. Sci Silvae Sin, 2019, 55(9):157-165.DOI: 10.11707/j.1001-7488.20190917.
[5]
王坤, 马国勇. 林业劳动生产率的区域差异及收敛性研究[J]. 求是学刊, 2022, 49(3):92-101.
WANG K, MA G Y. Research on regional differences and convergence of forestry labor productivity[J]. Seek Truth, 2022, 49(3):92-101.DOI: 10.19667/j.cnki.cn23-1070/c.2022.03.010.
[6]
TOTH D, MAITAH M, MAITAH K. Development and forecast of employment in forestry in the Czech republic[J]. Sustainability, 2019, 11(24):6901.DOI: 10.3390/su11246901.
[7]
MANAGI S. Productivity measures and effects from subsidies and trade:an empirical analysis for Japan’s forestry[J]. Appl Econ, 2010, 42(30):3871-3883.DOI: 10.1080/00036840802360146.
[8]
GRZEGORZEWSKA E, SEDLIACIKOVÁ M. Labour productivity in the sustainable development of wood-based industry:a case for the European Union countries[J]. BioResources, 2021, 16(2):3643-3661.DOI: 10.15376/biores.16.2.3643-3661.
[9]
SILAYO D S, KIPARU S S, MAUYA E W, et al. Working conditions and productivity under private and public logging companies in Tanzania[J]. Croat J For Eng, 2010, 31(1):65-74.
[10]
夏永红, 沈文星. 木材加工产业集聚、共聚与劳动生产率效应[J]. 南京林业大学学报(自然科学版), 2019, 43(3):131-136.
XIA Y H, SHEN W X. Agglomeration,coagglomeration and labor productivity effects of wood processing industry[J]. J Nanjing For Univ (Nat Sci Ed), 2019, 43(3):131-136.DOI: 10.3969/j.issn.1000-2006.201805058.
[11]
NGUYEN MINH D, SHEN Y, ZHANG Y, et al. Logging productivity and production function in Alabama,1995 to 2000[J]. For Prod J, 2009, 59(7-8): 22-26.DOI: 10.1002/mrd.10241.
[12]
EKERS M. ‘Pounding dirt all day’:labor,sexuality and gender in the British Columbia reforestation sector[J]. Gend Place Cult, 2013, 20(7):876-895.DOI: 10.1080/0966369x.2012.737768.
[13]
RATNASINGAM J, YI L Y, AZIMN A, et al. Assessing the awareness and readiness of the Malaysian furniture industry for Industry 4.0[J]. BioResources, 2020, 15(3):4866-4885.DOI: 10.15376/biores.15.3.4866-4885.
[14]
HITKA M, POTKANY Y, SIROTIAKOVA M. Proposal of assessment of wood processing company employees[J]. Drewno, 2009, 52(182):91-102.DOI: 10.1007/s00226-008-0200-y.
[15]
袁富华. 劳动生产率:关联与差异:基于GWR模型的分析[J]. 经济学, 2011, 11(2):709-734.
YUAN F H. Correlations and deviations in regional labor productivity:based on geographically weighted regressions[J]. China Econ Q, 2011, 11(2):709-734.DOI: 10.13821/j.cnki.ceq.2011.02.002.
[16]
柯文前, 陆玉麒, 俞肇元, 等. 江苏县域劳动生产率的空间关联与分异演化格局[J]. 经济地理, 2013, 33(12):24-30.
KE W Q, LU Y Q, YU Z Y, et al. The spatial correlations and deviations evolution pattern in Jiangsu county labor productivity[J]. Econ Geogr, 2013, 33(12):24-30.DOI: 10.15957/j.cnki.jjdl.2013.12.014.
[17]
文高辉, 刘蒙罢, 胡贤辉. 耕地细碎化对农户劳动生产率影响的空间计量分析[J]. 中国农业资源与区划, 2021, 42(2):167-175.
WEN G H, LIU M B, HU X H. Spatial econometric analysis of the impact of cultivated land fragmentation on farmers’ labor productivity[J]. Chin J Agric Resour Reg Plan, 2021, 42(2):167-175.DOI: 10.7621/cjarrp.1005-9121.20210220.
[18]
韩国莹, 刘同山. 空气质量对劳动生产率的影响:基于森林资源的调节效应[J]. 农林经济管理学报, 2021, 20(5):640-648.
HAN G Y, LIU T S. Effect of air quality on labor productivity:based on the moderating effect of forest resources[J]. J Agro For Econ Manag, 2021, 20(5):640-648.DOI: 10.16195/j.cnki.cn36-1328/f.2021.05.66.
[19]
罗能生, 王玉泽. 财政分权、环境规制与区域生态效率:基于动态空间杜宾模型的实证研究[J]. 中国人口·资源与环境, 2017, 27(4):110-118.
LUO N S, WANG Y Z. Fiscal decentralization,environmental regulation and regional eco-efficiency:based on the dynamic spatial Durbin model[J]. China Popul Resour Environ, 2017, 27(4):110-118.DOI: 10.12062/cpre.20170327.
[20]
陈菁菁, 李颂, 丁胜. 基于空间视角的我国经济林产业集聚分析[J]. 南京林业大学学报(自然科学版), 2023, 47(2):159-166.
CHEN J J, LI S, DING S. Analysis on industrial agglomeration of China’s non-wood forest based on spatial perspectives[J]. J Nanjing For Univ (Nat Sci Ed), 2023, 47(2):159-166.DOI: 10.12302/j.issn.1000-2006.202108048.
[21]
ANSELIN L, SYABRI I, SMIRNOV O. Visualizing multivariate spatial correlation with dynamically linked windows[C]//The Annual Meetings of the Association of American Geographers. New Tools for Spatial Data Analysis:Proceedings of the Specialist Meeting. California: University of California Santa Barbara,2002: 1-20.
[22]
王伟, 纪翌佳, 金凤君. 基于动态空间面板模型的中国港口竞争与合作关系研究[J]. 地理研究, 2022, 41(3):616-632.
WANG W, JI Y J, JIN F J. The competition and cooperation relationship of Chinese ports based on dynamic spatial panel model[J]. Geogr Res, 2022, 41(3):616-632.DOI: 10.11821/dlyj020210052.
[23]
王国定, 陈祥, 孔欢. 城乡收入差距与人口老龄化的时空关联:基于动态空间面板模型的实证分析[J]. 经济问题, 2022(7):44-53.
WANG G D, CHEN X, KONG H. Temporal and spatial relationship of urban-rural income gap and population aging:an empirical analysis based on dynamic spatial panel model[J]. Econ Probl, 2022(7):44-53.DOI: 10.16011/j.cnki.jjwt.2022.07.015.
[24]
张娇, 宁攸凉. 中国林业科技进步贡献率测算分析:2000—2015年[J]. 林业经济, 2018, 40(11):90-95.
ZHANG J, NING Y L. Calculation and analysis on contribution rate of forestry science and technology progress in China:2000—2015[J]. For Econ, 2018, 40(11):90-95.DOI: 10.13843/j.cnki.lyjj.2018.11.015.
[25]
吴延瑞. 生产率对中国经济增长的贡献:新的估计[J]. 经济学, 2008, 8(3):827-842.
WU Y R. The role of productivity in China’s growth:new estimates[J]. China Econ Q, 2008, 8(3):827-842.
[26]
平瑛, 施文杰. 农产品加工业集聚、空间溢出与农业高质量发展[J]. 中国农业资源与区划, 2023, 44(3):155-167.
PING Y, SHI W J. Agglomeration,spatial spillover of agro-processing industry and high-quality agricultural development[J]. Chin J Agric Resour Reg Plan, 2023, 44(3):155-167.DOI: 10.7621/cjarrp.1005-9121.20230316.
[27]
李朝洪, 韦唯, 姜钰. 黑龙江省天保工程区绩效评价及其障碍因子甄别[J]. 南京林业大学学报(自然科学版), 2022, 46(5):201-212.
LI C H, WEI W, JIANG Y. Performance evaluation and obstacle factor screening of Natural Forest Protection Project area in Heilongjiang Province[J]. J Nanjing For Univ (Nat Sci Ed), 2022, 46(5):201-212.DOI: 10.12302/j.issn.1000-2006.202106010.
[28]
黄大湖, 丁士军. 农业技术进步、空间效应与城乡收入差距:基于省级面板数据的分析[J]. 中国农业资源与区划, 2022, 43(11):239-248.
HUANG D H, DING S J. Agricutural technology progress,spatial effect and urban-rural income gap: based on the analysis of provincial panel date[J]. Chin J Agric Resour Reg Plan, 2022, 43(11):239-248.DOI: 10.7621/cjarrp.1005-9121.20221123.
[29]
盛艳燕. 实际工资影响劳动生产率的空间关联性研究[J]. 文山学院学报, 2019, 32(3):74-80.
SHENG Y Y. Spatial correlation of real wages affecting productivity[J]. J Wenshan Univ, 2019, 32(3):74-80.DOI: 10.3969/j.issn.1674-9200.2019.03.018.
[30]
陈勇吏, 李经, 魏下海. 最低工资标准影响劳动力空间配置吗?基于地方政府竞争视角的分析[J]. 财经研究, 2022, 48(10):108-122.
CHEN Y L, LI J, WEI X H. Does the minimum wage standard affect the spatial allocation of labor force?A perspective of local government competition[J]. J Finance Econ, 2022, 48(10):108-122.DOI: 10.16538/j.cnki.jfe.20220615.301.
PDF(1843 KB)

Accesses

Citation

Detail

Sections
Recommended
The full text is translated into English by AI, aiming to facilitate reading and comprehension. The core content is subject to the explanation in Chinese.

/