Effect of biochar application on soil runoff and water quality in green roof

LI Juan, XUE Jianhui, XIONG Weiwei, ZHANG Guowei, WANG Hankun

JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2025, Vol. 49 ›› Issue (2) : 153-160.

PDF(2010 KB)
PDF(2010 KB)
JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2025, Vol. 49 ›› Issue (2) : 153-160. DOI: 10.12302/j.issn.1000-2006.202305032

Effect of biochar application on soil runoff and water quality in green roof

Author information +
History +

Abstract

【Objective】Roof greening has become a popular method for increasing urban green spaces and mitigating the urban “heat island effect”. Recently, biochar, known for its lightweight and highly porous nature, has been utilized as a soil amendment in the agricultural and forestry sectors. This study explores the impacts of varying biochar application rates and pyrolysis temperatures on soil runoff and nutrient content in roof greening, to assess biochar’s potential for enhancing urban roof greening practices.【Method】The experiment involved three levels of biochar application (0%, 10% and 20%, volume fraction) and three pyrolysis temperatures (300, 400 and 500 ℃), with four replicates per treatment. Each planting box was filled with a 10 cm thick layer of treated soil matrix and planted with Sedum lineare. Soil runoff was collected and analyzed after each rainfall event.【Result】The findings indicated that biochar application could increase soil pH and significantly reduce the levels of total nitrogen (TN) and dissolved organic carbon (DOC) in the runoff. While a 10% biochar addition decreased the total phosphorus (TP) concentration in the runoff, a 20% addition had the opposite effect. Moreover, biochar was effective in reducing soil runoff and nutrient concentration, thus minimizing nutrient loss from the soil. There was no significant difference in the effects of biochar processed at different pyrolysis temperatures on runoff quality. 【Conclusion】Optimal biochar application can significantly decrease N and P loss in roof soil runoff, indirectly reducing urban runoff pollution. This suggests a promising application for biochar in managing urban stormwater runoff.

Key words

roof greening / biochar / addition amount / pyrolysis temperature / soil / runoff water quality / urban pollution

Cite this article

Download Citations
LI Juan , XUE Jianhui , XIONG Weiwei , et al . Effect of biochar application on soil runoff and water quality in green roof[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2025, 49(2): 153-160 https://doi.org/10.12302/j.issn.1000-2006.202305032

References

[1]
董菁, 左进, 吝涛, 等. 高度城市化地区屋顶绿化径流调控效益评价:以厦门岛为例[J]. 生态学报, 2022, 42(6):2237-2250.
DONG J, ZUO J, LIN T, et al. Assessment of hydrological perfor-mance of green roofs in highly urbanized areas:a case study of Xiamen Island[J]. Acta Ecol Sin, 2022, 42(6):2237-2250.DOI: 10.5846/stxb202012163197.
[2]
HUANG S, GARG A, MEI G X, et al. Experimental study on the hydrological performance of green roofs in the application of novel biochar[J]. Hydrol Process, 2020, 34(23):4512-4525.DOI: 10.1002/hyp.13881.
[3]
陈智龙, 董雨琴, 陈凌静, 等. 城市热岛效应变化及其影响因素分析研究[J]. 江苏林业科技, 2021, 48(6):34-40,52.
CHEN Z L, DONG Y Q, CHEN L J, et al. Change of,social and economic impact on urban heat island effect from 2014 to 2019[J]. J Jiangsu For Sci Technol, 2021, 48(6):34-40,52.DOI: 10.3969/j.issn.1001-7380.2021.06.006.
[4]
CHEN H M, MA J Y, WANG X J, et al. Effects of biochar and sludge on carbon storage of urban green roofs[J]. Forests, 2018, 9(7):413.DOI: 10.3390/f9070413.
[5]
AYATA T, TABARES-VELASCO P C, SREBRIC J. An investigation of sensible heat fluxes at a green roof in a laboratory setup[J]. Build Environ, 2011, 46(9):1851-1861.DOI: 10.1016/j.buildenv.2011.03.006.
[6]
SUSCA T. Green roofs to reduce building energy use? A review on key structural factors of green roofs and their effects on urban climate[J]. Build Environ, 2019,162:106273.DOI: 10.1016/j.buildenv.2019.106273.
[7]
CASTLETON H F, STOVIN V, BECK S B M, et al. Green roofs:building energy savings and the potential for retrofit[J]. Energy Build, 2010, 42(10):1582-1591.DOI: 10.1016/j.enbuild.2010.05.004.
[8]
KUOPPAMÄKI K, LEHVÄVIRTA S. Mitigating nutrient leaching from green roofs with biochar[J]. Landsc Urban Plan, 2016, 152:39-48.DOI: 10.1016/j.landurbplan.2016.04.006.
[9]
ALEXANDRI E, JONES P. Temperature decreases in an urban canyon due to green walls and green roofs in diverse climates[J]. Build Environ, 2008, 43(4):480-493.DOI: 10.1016/j.buildenv.2006.10.055.
[10]
CARTER T, JACKSON C R. Vegetated roofs for stormwater ma-nagement at multiple spatial scales[J]. Landsc Urban Plan, 2007, 80(1/2):84-94.DOI: 10.1016/j.landurbplan.2006.06.005.
[11]
GETTER K L, ROWE D B, ROBERTSON G P, et al. Carbon sequestration potential of extensive green roofs[J]. Environ Sci Technol, 2009, 43(19):7564-7570.DOI: 10.1021/es901539x.
[12]
张鹏. 屋顶绿化专用草坪草筛选研究:以济南地区为例[D]. 济南: 山东建筑大学, 2021.
ZHANG P. Screening of turfgrass for roof greening: a case study of Jinan[D]. Jinan: Shandong Jianzhu University, 2021.
[13]
ZHANG Q Q, WANG X K, HOU P Q, et al. Quality and seasonal variation of rainwater harvested from concrete,asphalt,ceramic tile and green roofs in Chongqing,China[J]. J Environ Manage, 2014, 132:178-187.DOI: 10.1016/j.jenvman.2013.11.009.
[14]
VIJAYARAGHAVAN K, JOSHI U M, BALASUBRAMANIAN R. A field study to evaluate runoff quality from green roofs[J]. Water Res, 2012, 46(4):1337-1345.DOI: 10.1016/j.watres.2011.12.050.
[15]
陈颢明. 屋顶绿化基质中添加生物炭的生态效应研究[D]. 南京: 南京农业大学, 2018.
CHEN H M. Study on ecological effect of adding biochar to roof greening substrate[D]. Nanjing: Nanjing Agricultural University, 2018.
[16]
HUANG S, HUANG D S, GARG A, et al. Stormwater management of biochar-amended green roofs:peak flow and hydraulic parameters using combined experimental and numerical investigation[J]. Biomass Convers Biorefin, 2024, 14(5):5835-5846.DOI: 10.1007/s13399-020-01109-x.
[17]
周之栋, 卜晓莉, 吴永波, 等. 生物炭对土壤微生物特性影响的研究进展[J]. 南京林业大学学报(自然科学版), 2016, 40(6):1-8.
ZHOU Z D, BU X L, WU Y B, et al. Research advances in biochar effects on soil microbial properties[J]. J Nanjing For Univ (Nat Sci Ed), 2016, 40(6):1-8.DOI: 10.3969/j.issn.1000-2006.2016.06.001.
[18]
王娟, 黄成真. 生物炭对土壤改良效果的研究进展[J]. 水资源与水工程学报, 2020, 31(3):246-253.
WANG J, HUANG C Z. Research process of soil amelioration with the application of biochars[J]. J Water Resour Water Eng, 2020, 31(3):246-253.DOI: 10.11705/j.issn.1672-643X.2020.03.36.
[19]
黄康. 不同热解温度秸秆生物炭还田培肥土壤及其固碳潜力的研究[D]. 武汉: 华中农业大学, 2022.
HUANG K. Study on returning straw biochar to field to improve soil and its carbon fixation potential at different pyrolysis temperatures[D]. Wuhan: Huazhong Agricultural University, 2022.
[20]
丁应祥. 下蜀森林生态定位站径流场土壤性状及分类[J]. 南京林业大学学报, 1999, 23(6):37-42.
DING Y X. Soil characterization of the runoff plots in Xiashu Forest Ecological station[J]. J Nanjing For Univ, 1999, 23(6):37-42.
[21]
国家环保局《水和废水监测分析法》编委会. 水和废水监测分析方法[M]. 4版. 北京: 中国环境科学出版社, 2002: 236-284.
Editorial Committee of The Water and Wastewater Monitoring and Analysis Law of the National Environmental Protection Administration. Water and wastewater monitoring and analysis methods[M]. Fourth Edition. Beijing: China Environmental Science Press, 2002: 236-284.
[22]
生态环境部.环境影响评价技术导则地表水环境:HJ 2.3—2018[S]. 北京: 中国环境科学出版社, 2018.
[23]
国家环境保护总局,国家质量监督检验检疫总局.地表水环境质量标准:GB 3838—2002[S]. 北京: 中国环境科学出版社, 2002.
[24]
刘楠. 缙云山典型林分对径流水质的作用及评价研究[D]. 北京: 北京林业大学, 2011.
LIU N. study on the function and evalua-tion of typical forests in Jinyun Mountain on runoff water quality[D]. Beijing: Beijing Forestry University, 2011.
[25]
罗婷, 许文年, 程虎, 等. 粗放型绿色屋顶基质层对降雨出流水质影响[J]. 环境工程, 2020, 38(4):39-45.
LUO T, XU W N, CHENG H, et al. Effect of substrate composition of extensive green roof on water quality of rainfall outflow[J]. Environ Eng, 2020, 38(4):39-45.DOI: 10.13205/j.hjgc.202004008.
[26]
LEHMANN J, PEREIRA D S J, STEINER C, et al. Nutrient availability and leaching in an archaeological Anthrosol and a Ferralsol of the Central Amazon basin:fertilizer,manure and charcoal amendments[J]. Plant Soil, 2003, 249(2):343-357.DOI: 10.1023/A:1022833116184.
[27]
戴子云, 谢军飞, 许蕊. 北京地区绿色屋顶的径流特征研究[J]. 建筑节能(中英文), 2022, 50(5):99-104.
DAI Z Y, XIE J F, XU R. Runoff characters of green roof in Beijing[J]. Build Energy Effic, 2022, 50(5):99-104.
[28]
张千千, 王慧玮, 翟天伦. 绿色屋面基质添加生物炭对降雨径流水质和水量的影响[J]. 生态环境学报, 2017, 26(6):1026-1033.
ZHANG Q Q, WANG H W, ZHAI T L. Effect of the substrate of green roof adding the biochar on water quality and quantity of rainfall runoff[J]. Ecol Environ Sci, 2017, 26(6):1026-1033.DOI: 10.16258/j.cnki.1674-5906.2017.06.016.
[29]
HATHAWAY A M, HUNT W F, JENNINGS G D. A field study of green roof hydrologic and water quality performance[J]. Trans ASABE, 2008, 51(1):37-44.DOI: 10.13031/2013.24225.
[30]
HARPER G E, LIMMER M A, SHOWALTER W E, et al. Nine-month evaluation of runoff quality and quantity from an experiential green roof in Missouri,USA[J]. Ecol Eng, 2015, 78:127-133.DOI: 10.1016/j.ecoleng.2014.06.004.
[31]
KUMARI K G I D, MOLDRUP P, PARADELO M, et al. Effects of biochar on air and water permeability and colloid and phosphorus leaching in soils from a natural calcium carbonate gradient[J]. J Environ Qual, 2014, 43(2):647-657.DOI: 10.2134/jeq2013.08.0334.
[32]
HONG C, LU S G. Does biochar affect the availability and chemical fractionation of phosphate in soils?[J]. Environ Sci Pollut Res Int, 2018, 25(9):8725-8734.DOI: 10.1007/s11356-018-1219-8.
[33]
RONSSE F, VAN HECKE S, DICKINSON D, et al. Production and characterization of slow pyrolysis biochar:influence of feedstock type and pyrolysis conditions[J]. GCB Bioenergy, 2013, 5(2):104-115.DOI: 10.1111/gcbb.12018.
[34]
闫代红, 马亚培, 宋凯悦, 等. 原料和热解温度对生物炭中可溶性有机质的影响[J]. 环境科学, 2021, 42(10):5030-5036.
YAN D H, MA Y P, SONG K Y, et al. Effects of feedstock material and pyrolysis temperature on dissolved organic matter in biochars[J]. Environ Sci, 2021, 42(10):5030-5036.DOI: 10.13227/j.hjkx.202010132.
[35]
丁思惠, 方升佐, 田野, 等. 不同热解温度下杨树各组分生物质炭的理化特性分析与评价[J]. 南京林业大学学报(自然科学版), 2020, 44(6):193-200.
DING S H, FANG S Z, TIAN Y, et al. Analysis and evaluation on physicochemical properties of poplar biochar at different pyrolysis temperatures[J]. J Nanjing For Univ (Nat Sci Ed), 2020, 44(6):193-200.DOI: 10.3969/j.issn.1000-2006.201910005.
[36]
IPPOLITO J A, CUI L Q, KAMMANN C, et al. Feedstock choice,pyrolysis temperature and type influence biochar characteristics:a comprehensive meta-data analysis review[J]. Biochar, 2020, 2(4):421-438.DOI: 10.1007/s42773-020-00067-x.
[37]
CAO X D, HARRIS W. Properties of dairy-manure-derived biochar pertinent to its potential use in remediation[J]. Bioresour Technol, 2010, 101(14):5222-5228.DOI: 10.1016/j.biortech.2010.02.052.
[38]
孙涛, 朱新萍, 李典鹏, 等. 不同原料生物炭理化性质的对比分析[J]. 农业资源与环境学报, 2017, 34(6):543-549.
SUN T, ZHU X P, LI D P, et al. Comparison of biochars characteristics from different raw materials[J]. J Agric Resour Environ, 2017, 34(6):543-549.DOI: 10.13254/j.jare.2017.0158.
[39]
MIJANGOS F, KAMEL M, LESMES G, et al. Synthesis of struvite by ion exchange isothermal supersaturation technique[J]. React Funct Polym, 2004, 60:151-161.DOI: 10.1016/j.reactfunctpolym.2004.02.019.
PDF(2010 KB)

Accesses

Citation

Detail

Sections
Recommended
The full text is translated into English by AI, aiming to facilitate reading and comprehension. The core content is subject to the explanation in Chinese.

/