Optimization of a drone flight plan for an urban street tree survey

REN Huazhang, SUN Yuan, LI Jilin, HAO Yu, LIN Zihang

JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2024, Vol. 48 ›› Issue (6) : 175-182.

PDF(1957 KB)
PDF(1957 KB)
JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2024, Vol. 48 ›› Issue (6) : 175-182. DOI: 10.12302/j.issn.1000-2006.202306014

Optimization of a drone flight plan for an urban street tree survey

Author information +
History +

Abstract

【Objective】Drawing on unmanned aerial vehicle (UAV) remote sensing and photogrammetry techniques from forestry surveys, this study aims to develop an optimal selection process for UAV solutions tailored to the investigation of urban street trees. This approach addresses the problem of uneven data sources caused by the various flight parameters and flight plans.【Method】Six different drone flight plans for urban street tree surveys were designed, and the analytic hierarchy process (AHP) was applied to select a flight plan that balanced accuracy and efficiency. Based on the selected plan, a corresponding model for estimating tree height using tree diameter at breast height (DBH) was established. The best predictive model for DBH was determined by evaluating the coefficient of determination, mean relative error (MRE), and root mean square error (RMSE). By comparing the accuracy of the tree number, tree height, crown width, and DBH, as well as the efficiency of data extraction, it was demonstrated that an optimized flight plan for urban tree surveys could improve efficiency, while maintaining the required level of accuracy.【Result】After conducting an AHP analysis, a Tic-Tac-Toe flight plan at a flight altitude of 70 m was identified as the optimal solution that balances accuracy and efficiency. The optimized flight plan achieved a precision of 94.44%, a recall of 80.95%, and an F1-score of 87.18% for tree number extraction. The average MRE for tree height extraction was 8.66%, with an RMSE of 1.22 m, and a coefficient of determination of 0.88. The average MRE for crown width extraction was 27.77%, with an RMSE of 1.30 m and a coefficient of determination of 0.69. The established model for predicting DBH achieved a coefficient of determination of 0.81. Compared to other flight plans, the optimized flight plan was conducted in 70% less time, while maintaining a high level of accuracy in tree number, tree height, crown width, and DBH measurements.【Conclusion】The optimized UAV flight plan, after achieving the required accuracy for street tree surveys, was 70% faster and obtained better quality data for tree number, tree height, crown width, and DBH. The UAV flight plan optimization process adopted in this study was proven to be effective and can be applied to the selection for urban street tree surveys.

Key words

street tree survey / oblique imagery / unmanned aerial vehicle (UAV) / analytic hierarchy process (AHP) / regression model

Cite this article

Download Citations
REN Huazhang , SUN Yuan , LI Jilin , et al . Optimization of a drone flight plan for an urban street tree survey[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2024, 48(6): 175-182 https://doi.org/10.12302/j.issn.1000-2006.202306014

References

[1]
何兴元, 金莹杉, 朱文泉, 等. 城市森林生态学的基本理论与研究方法[J]. 应用生态学报, 2002, 13(12):1679-1683.
HE X Y, JIN Y S, ZHU W Q, et al. Basic theory and research method of urban forest ecology[J]. Chin J Appl Ecol, 2002, 13(12):1679-1683.
[2]
梁陈涛, 杨艳波, 田盼立, 等. 基于街景测量的南昌市行道树结构特征与健康状况研究[J]. 生态学报, 2022, 42(2):549-560.
LIANG C T, YANG Y B, TIAN P L, et al. Structural characteristics and health status of roadside trees in Nanchang City,China from Baidu Street View-based measurements[J]. Acta Ecol Sin, 2022, 42(2):549-560.DOI: 10.5846/stxb202011243011.
[3]
杨陆强, 果霖, 朱加繁, 等. 我国农用无人机发展概况与展望[J]. 农机化研究, 2017, 39(8):6-11.
YANG L Q, GUO L, ZHU J F, et al. The development situation and prospect of agricultural UAV in China[J]. J Agric Mech Res, 2017, 39(8):6-11.DOI: 10.13427/j.cnki.njyi.2017.08.002.
[4]
NEVALAINEN O, HONKAVAARA E, TUOMINEN S, et al. Individual tree detection and classification with UAV-based photogrammetric point clouds and hyperspectral imaging[J]. Remote Sens, 2017, 9(3):185.DOI: 10.3390/rs9030185.
[5]
白阳, 万鲁河. 基于无人机倾斜摄影测量实景三维模型构建方法[J]. 哈尔滨师范大学自然科学学报, 2017, 33(5):81-86.
BAI Y, WAN L H. Model of building 3D model based on UAV incline photogrammetry[J]. Nat Sci J Harbin Norm Univ, 2017, 33(5):81-86.DOI:10.3969/j.issn.1000-5617.2017.05.016.
[6]
PARK S, YUN S, KIM H, et al. Forestry monitoring system using LoRa and Drone[C]// Proceedings of the 8th International Conference on Web Intelligence,Mining and Semantics.June 25-27,2018, Novi Sad,Serbia: ACM,2018:1-8.DOI: 10.1145/3227609.3227677.
[7]
TANG L N, SHAO G F. Drone remote sensing for forestry research and practices[J]. J For Res, 2015, 26(4):791-797.DOI: 10.1007/s11676-015-0088-y.
[8]
WANG Y T, WANG J, CHANG S P, et al. Classification of street tree species using UAV tilt photogrammetry[J]. Remote Sens, 2021, 13(2):216.DOI: 10.3390/rs13020216.
[9]
王越, 何诚, 刘柏良, 等. 基于无人机倾斜摄影技术的单木参数提取及胸径模型构建[J]. 西南林业大学学报(自然科学), 2022, 42(1):166-173.
WANG Y, HE C, LIU B L, et al. Single wood parameters extraction and DBH model construction based on UAV tilt photography technology[J]. J Southwest For Univ (Nat Sci), 2022, 42(1):166-173.DOI:10.11929/j.swfu.202009047.
[10]
杜意鸿, 尹田, 周雪梅, 等. 倾斜摄影测量技术提取油松单木信息[J]. 北京林业大学学报, 2021, 43(4):77-86.
DU Y H, YIN T, ZHOU X M, et al. Extraction of individual tree parameters of Chinese pine by oblique photogrammetry[J]. J Beijing For Univ, 2021, 43(4):77-86.DOI: 10.12171/j.1000-1522.20200198.
[11]
王圳, 高亚军, 闫凡峰, 等. 海滨城市道路绿化树种综合评价体系构建[J]. 南京林业大学学报(自然科学版), 2021, 45(2):187-196.
WANG Z, GAO Y J, YAN F F, et al. Construction of a comprehensive assessment system for road greening tree species in coastal cities[J]. J Nanjing For Univ (Nat Sci Ed), 2021, 45(2):187-196.DOI: 10.12302/j.issn.1000-2006.202007030.
[12]
WANG J L. Stochastic modeling for real-time kinematic GPS/GLONASS positioning[J]. Navigation, 1999, 46(4):297-305.DOI: 10.1002/j.2161-4296.1999.tb02416.x.
[13]
GE W Y, LI X X, JING L H, et al. Monitoring canopy-scale autumn leaf phenology at fine-scale using unmanned aerial vehicle (UAV) photography[J]. Agric For Meteor, 2023,332:109372.DOI: 10.1016/j.agrformet.2023.109372.
[14]
KRAUSE S, SANDERS T G M, MUND J P, et al. UAV-based photogrammetric tree height measurement for intensive forest monitoring[J]. Remote Sens, 2019, 11(7):758.DOI: 10.3390/rs11070758.
[15]
王伟, 黄宇星, 余鸿敏. 基于CART决策树的冲压成形仿真数据挖掘[J]. 工程科学学报, 2018, 40(11):1373-1379.
WANG W, HUANG Y X, YU H M. Data mining of deep drawing simulation results based on CART decision tree theory[J]. Chin J Eng, 2018, 40(11):1373-1379.DOI: 10.13374/j.issn2095-9389.2018.11.011.
[16]
郭佳惠, 教忠意, 何旭东, 等. 基于层次分析法对柳树观赏性及适应性的综合评价[J]. 南京林业大学学报(自然科学版), 2021, 45(6):169-176.
GUO J H, JIAO Z Y, HE X D, et al. A comprehensive evaluation of ornamental characteristics and adaptability of willows based on analytic hierarchy processes[J]. J Nanjing For Univ (Nat Sci Ed), 2021, 45(6):169-176.DOI: 10.12302/j.issn.1000-2006.202106002.
[17]
江苏省森林资源监测中心. 森林资源规划设计调查技术规程:DB32/T 2168—2012[S]. 南京: 江苏省质量技术监督局, 2012.
[18]
焦树锋. AHP法中平均随机一致性指标的算法及MATLAB实现[J]. 太原师范学院学报(自然科学版), 2006, 5(4):45-47.
JIAO S F. The algorithm of mean random consistency index in AHP and its implementation[J]. J Taiyuan Norm Univ (Nat Sci Ed), 2006, 5(4):45-47.DOI: 10.3969/j.issn.1672-2027.2006.04.016.
[19]
雍昭君. 无人机倾斜摄影测量三维建模精度多层次模糊综合评价研究[D]. 武汉: 华中科技大学, 2019.
YONG Z J. Research on multi-level fuzzy comprehensive evaluation of 3D modeling accuracy of UAV tilt photogrammetry[D]. Wuhan: Huazhong University of Science and Technology, 2019.DOI: 10.27157/d.cnki.ghzku.2019.001112.
[20]
何勇, 杜晓月, 郑力源, 等. 无人机飞行高度对植被覆盖度和植被指数估算结果的影响[J]. 农业工程学报, 2022, 38(24):63-72.
HE Y, DU X Y, ZHENG L Y, et al. Effects of UAV flight height on estimated fractional vegetation cover and vegetation index[J]. Trans Chin Soc Agric Eng, 2022, 38(24):63-72.DOI: 10.11975/j.issn.1002-6819.2022.24.007.
[21]
牛利伟. 基于无人机倾斜摄影测量的行道树特征提取与分类研究[D]. 北京: 北京林业大学, 2020.
NIU L W. Research on feature extraction and classification of street trees based on UAV tilt photogrammetry[D]. Beijing: Beijing Forestry University, 2020.
[22]
李晓斌, 林志军, 杨玺, 等. 基于激光扫描和倾斜摄影技术的三维实景融合建模研究[J]. 激光杂志, 2021, 42(8):166-170.
LI X B, LIN Z J, YANG X, et al. Research on 3D real scene fusion modeling based on laser scanning and oblique photography[J]. Laser J, 2021, 42(8):166-170.DOI: 10.14016/j.cnki.jgzz.2021.08.166.
[23]
姜启源. 层次分析法应用过程中的若干问题[J]. 数学的实践与认识, 2013, 43(23):156-168.
JIANG Q Y. Some issues in the applications for the analytic hierarchy process[J]. Math Pract Theory, 2013, 43(23):156-168.DOI: 10.3969/j.issn.1000-0984.2013.23.021
PDF(1957 KB)

Accesses

Citation

Detail

Sections
Recommended
The full text is translated into English by AI, aiming to facilitate reading and comprehension. The core content is subject to the explanation in Chinese.

/