Effect of potassium fertilization on the composition and content of volatile secondary metabolites in leaves and twigs of young Phoebe bournei

LUO Jiaqi, WEN shizhi, LIU Peishu, PENG Xiaofeng, ZHOU Jinjin, HE Gongxiu

JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2025, Vol. 49 ›› Issue (5) : 75-86.

PDF(2548 KB)
PDF(2548 KB)
JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2025, Vol. 49 ›› Issue (5) : 75-86. DOI: 10.12302/j.issn.1000-2006.202307031

Effect of potassium fertilization on the composition and content of volatile secondary metabolites in leaves and twigs of young Phoebe bournei

Author information +
History +

Abstract

【Objective】Deciphering the effects of different potassium (K) additions on the total amount and main components of volatile secondary metabolites (VOCs) in the leaves and twigs can provide guidance for the multifunctional management of Phoebe bournei. 【Method】Here, the 10-year-old P. bournei monoculture plantations in Jindong Forestry Farm were selected as research objects, and five potassium fertilizer (K2O>52%) levels (CK, 0 g/individual; K1, 60 g/individual; K2, 120 g/individual; K3, 180 g/individual; K4, 240 g/individual) were employed and conducted. The samples were collected in January and July after the amendment of potassium fertilizer (in summer). The determinations and extractions of plant VOCs were using hydro distillation and Gas Chromatography-Mass Spectrometry (GC-MS). 【Result】The potassium fertilization level had a significant effect on the content of VOCs in P. bournei. The VOCs content in leaves and twigs showed a trend of initially increasing and then decreasing. In January, the highest extraction rate (mass fraction) was observed in the K2 treatment (in leaves 0.48‰, in twigs 0.55‰), while the highest extraction rate (mass fraction) was observed in the K1 treatment (in leaves 0.47‰, in twigs 0.34‰) in July. Alloaroma dendrene, caryophyllene and (-)-alpha-pinene in leaves was the feature components in leaves of P. bournei VOCs, and beta-caryophyllene, (-)-alpha-pinene and (-)-alpha-bisabolene were the characteristic components of VOCs in twigs. The VOCs were mainly composed of olefins, naphthalenes, and alcohols. The relative content of olefins and naphthalenes in the leaves increased significantly under the K2 treatment in both seasons, while the relative content of alcohols decreased significantly after fertilization. In addition, leaf nutrients had a positive effect on the content of VOCs in twigs, and the path coefficient was extremely significant. Twig nutrients had a positive effect on the relative content of various types of VOCs in the leaves. 【Conclusion】The application of potassium fertilizer significantly affects the amount and components of VOCs and nutrient content in the leaves and twigs of P. bournei, when the application is 60-180 g/individual, the total content of VOCs in the leaves and twigs of P. bournei reaches its highest level. Overall, K3 is the optimal treatment in January, while K2 is the optimal treatment in July. The model demonstrates that nutrient elements have a positive impact on the synthesis of sesquiterpenes such as alkenes and naphthalenes in the VOCs found in leaves and twigs.

Key words

Phoebe bournei / potassium fertilizer / volatile secondary metabolites / nutrient

Cite this article

Download Citations
LUO Jiaqi , WEN shizhi , LIU Peishu , et al . Effect of potassium fertilization on the composition and content of volatile secondary metabolites in leaves and twigs of young Phoebe bournei[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2025, 49(5): 75-86 https://doi.org/10.12302/j.issn.1000-2006.202307031

References

[1]
郝龙飞, 王庆成, 刘婷岩, 等. 指数施肥对斑叶稠李苗木生物量分配、光合作用及根系形态的影响[J]. 林业科学, 2014, 50(11):175-181.
HAO L F, WANG Q C, LIU T Y, et al. Effect of exponential fertilization on biomass allocation,photosynthesis and root morphology of Padus maackii seedlings[J]. Scientia Silvae Sinicae, 2014, 50(11):175-181.DOI: 10.11707/j.1001-7488.20141123.
[2]
周维. 氮磷钾配比施肥对格木幼苗生长及光合特性影响的研究[D]. 南宁: 广西大学, 2016.
ZHOU W. Effects of N,P and K fertilization on growth and photosynthetic characteristics of Grifola frondosa seedlings[D]. Nanning: Guangxi University, 2016.
[3]
KASRATI A, ALAOUI JAMALI C, SPOONER-HART R, et al. Chemical characterization and biological activities of essential oil obtained from mint timija cultivated under mineral and biological fertilizers[J]. Journal of Analytical Methods in Chemistry, 2017, 2017:6354532.DOI: 10.1155/2017/6354532.
[4]
陆潭, 陈华涛, 沈振国, 等. 植物钾通道与钾转运体研究进展[J]. 华北农学报, 2019, 34(S1):372-379.
LU T, CHEN H T, SHEN Z G, et al. Research progress of potassium channels and potassium transporters in plants[J]. Acta Agriculturae Boreali-Sinica, 2019, 34(S1):372-379.DOI: 10.7668/hbnxb.201751528.
[5]
COCHRANE T T, COCHRANE T A. The vital role of potassium in the osmotic mechanism of stomata aperture modulation and its link with potassium deficiency[J]. Plant Signaling & Behavior, 2009, 4(3):240-243.DOI: 10.4161/psb.4.3.7955.
[6]
SONG X D, LIU F, WU H Y, et al. Effects of long-term K fertilization on soil available potassium in east China[J]. CATENA, 2020, 188:104412.DOI: 10.1016/j.catena.2019.104412.
[7]
HUANG W, LIN M Y, LIAO J M, et al. Effects of potassium deficiency on the growth of tea (Camelia sinensis) and strategies for optimizing potassium levels in soil:a critical review[J]. Horticulturae, 2022, 8(7):660.DOI: 10.3390/horticulturae8070660.
[8]
郭满, 杨博超, 王凤娇, 等. 供钾水平对核桃幼苗生长及光合作用的影响[J]. 中国果树, 2023(2):25-30.
GUO M, YANG B C, WANG F J, et al. Effects of different potassium levels on growth and photosynthesis of walnut seedlings[J]. China Fruits, 2023(2):25-30.DOI: 10.16626/j.cnki.issn1000-8047.2023.02.005.
[9]
KUTCHAN T M. Ecological arsenal and developmental dispatcher.The paradigm of secondary metabolism[J]. Plant Physiology, 2001, 125(1):58-60.DOI: 10.1104/pp.125.1.58.
[10]
GERSHENZON J, DUDAREVA N. The function of terpene natural products in the natural world[J]. Nature Chemical Biology, 2007, 3(7):408-414.DOI: 10.1038/nchembio.2007.5.
[11]
PRAKASH B, KEDIA A, MISHRA P K, et al. Plant essential oils as food preservatives to control moulds,mycotoxin contamination and oxidative deterioration of agri-food commodities-potentials and challenges[J]. Food Control, 2015, 47:381-391.DOI: 10.1016/j.foodcont.2014.07.023.
[12]
扶巧梅. 五种柏科植物精油对蚊虫的生物活性[D]. 长沙: 中南林业科技大学, 2012.
FU Q M. Biological activities of essential oils from five Cupressaceae plants against mosquitoes[D]. Changsha: Central South University of Forestry & Technology, 2012.
[13]
毛运芝, 冯璐璐, 冉慧, 等. 缙云山5种乡土楠木资源叶片精油挥发性成分GC-MS鉴定与组成差异分析[J]. 林业科学, 2019, 55(2):182-196.
MAO Y Z, FENG L L, RAN H, et al. Identification of essential oils and the volatile components from leaves of five native Phoebe plant in Jinyun Mountain by GC-MS[J]. Scientia Silvae Sinicae, 2019, 55(2):182-196.DOI: 10.11707/j.1001-7488.20190219.
[14]
郑炳松, 程晓建, 蒋德安, 等. 钾元素对植物光合速率、Rubisco和RCA的影响[J]. 浙江林学院学报, 2002, 19(1):104-108.
ZHENG B S, CHENG X J, JIANG D A, et al. Effects of potassium on Rubisco,RCA and photosynthetic rate of plant[J]. Journal of Zhejiang A & F University, 2002, 19(1):104-108.DOI: 10.3969/j.issn.2095-0756.2002.01.023.
[15]
WANG M, ZHENG Q S, SHEN Q R, et al. The critical role of potassium in plant stress response[J]. International Journal of Molecular Sciences, 2013, 14(4):7370-7390.DOI: 10.3390/ijms14047370.
[16]
何金明, 肖艳辉, 王羽梅, 等. 钾浓度对茴香植株生长发育、精油含量和组分的影响[J]. 生态环境学报, 2013, 22(3):417-422.
HE J M, HE J M, WANG Y M, et al. The effect of potassium concentrations on growth,essential oil contents and components of fennel plant (Foeniculum vulgare Mill.)[J]. Ecology and Environmental Sciences, 2013, 22(3):417-422.DOI: 10.3969/j.issn.1674-5906.2013.03.011.
[17]
HORNOK L. Effect of nutrition supply on yield of dill/Anethum graveolens L./and the essential oil content[J]. Acta Horticulturae, 1980(96):337-342.DOI: 10.17660/actahortic.1980.96.36.
[18]
胡文杰. 樟树不同化学型精油主成分时空变异规律及优良单株选择[D]. 南京: 南京林业大学, 2013.
HU W J. Temporal and spatial variation of main components of different chemical essential oils of Cinnamomum camphora and selection of excellent individual plants[D]. Nanjing: Nanjing Forestry University, 2013.
[19]
PEREIRA B D, MARA DE MENEZES EPIFANIO N, ANDRÉ ALVES DE SOUZA M, et al. Seasonality effect on essential oil yield and chemical composition of four accessions of Schinus molle L[J]. Revista Virtual de Química, 2019, 11(5):1551-1561.DOI: 10.21577/1984-6835.20190108.
[20]
周全发, 谢柯香. 闽楠苗木培育技术[J]. 林业与生态, 2019(9):36-37.
ZHOU Q F, XIE K X. Seedling cultivation techniques of Phoebe bournei[J]. Forestry and Ecology, 2019(9):36-37.DOI: 10.13552/j.cnki.lyyst.2019.09.019.
[21]
PINO J A, FUENTES V. Leaf oil of Cinnamomum camphora(L.) J Presl from Cuba[J]. Journal of Essential Oil Research, 1998, 10(5):531-532.DOI: 10.1080/10412905.1998.9700962.
[22]
LIU L, JI L, LAI Y, et al. Molecular mechanism of Phoebe bournei essential oils inhibiting the survival of Staphylococcus aureus and Bacillus cereus[J]. Industrial Crops and Products, 2023, 204:117229.DOI: 10.1016/j.indcrop.2023.117229.
[23]
谢亚斌. 不同配方施肥对闽楠幼林影响的研究[D]. 长沙: 中南林业科技大学, 2019.
XIE Y B. Effects of different formulated fertilization on young Phoebe bournei forest[D]. Changsha: Central South University of Forestry & Technology, 2019.
[25]
赵姣. 芳樟枝叶精油含量与营养元素含量的动态变化及其相关性[J]. 林业科学, 2021, 57(12):57-67.
ZHAO J. Dynamic changes of the contents of essential oil and nutrients of Cinnamomum camphora var. linaloolifera and their correlation[J]. Scientia Silvae Sinicae, 2021, 57(12):57-67.DOI: 10.11707/j.1001-7488.20211206.
[26]
张薇, 付昀, 李季芳, 等. 基于凯氏定氮法与杜马斯燃烧法测定土壤全氮的比较研究[J]. 中国农学通报, 2015, 31(35):172-175.
ZHANG W, FU Y, LI J F, et al. Comparative study on Kjeldahl method and Dumas combustion method for total nitrogen measurement in soil[J]. Chinese Agricultural Science Bulletin, 2015, 31(35):172-175.
[27]
邹映雪, 黄安香, 杨守禄, 等. 森林植物全钾测定两种消煮法比较[J]. 贵州林业科技, 2016, 44(4):32-35.
ZOU Y X, HUANG A X, YANG S L, et al. Comparison of two digesting methods for determinating the total potassium in forest plants[J]. Guizhou Forestry Science and Technology, 2016, 44(4): 32-35.
[28]
董翔, 何功秀, 文仕知, 等. 不同施肥处理条件下闽楠叶片精油组分GC/MS鉴定分析[J]. 中国粮油学报, 2020, 35(12):156-163.
DONG X, HE G X, WEN S Z, et al. GC/MS identification and analysis of essential oil components of Phoebe bournei leaves under different fertilization treatment conditions[J]. Journal of the Chinese Cereals and Oils Association, 2020, 35(12):156-163.DOI: 10.3969/j.issn.1003-0174.2020.12.025.
[29]
MOGHIMIPOUR E, AGHEL N, ZAREI MAHMOUDABADI A, et al. Preparation and characterization of liposomes containing essential oil of Eucalyptus camaldulensis leaf[J]. Jundishapur Journal of Natural Pharmaceutical Products, 2012, 7(3):117-122.
[30]
刘沛书, 文仕知, 李智华, 等. 施氮对闽楠挥发性次生代谢物组分和含量的影响[J]. 中南林业科技大学学报, 2023, 43(5):16-26,48.
LIU P S, WEN S Z, LI Z H, et al. Effects of nitrogen application on components and contents of volatile secondary metabolites in Phoebe bournei[J]. Journal of Central South University of Forestry & Technology, 2023, 43(5):16-26,48.DOI: 10.14067/j.cnki.1673-923x.2023.05.003.
[31]
KIM M S, LEE S H, KIM J G. Evaluation of factors affecting arsenic uptake by Brassica juncea in alkali soil after biochar application using partial least squares path modeling (PLS-PM)[J]. Chemosphere, 2021, 275:130095.DOI: 10.1016/j.chemosphere.2021.130095.
[32]
CHRYSARGYRIS A, XYLIA P, BOTSARIS G, et al. Antioxidant and antibacterial activities,mineral and essential oil composition of spearmint (Mentha spicata L.) affected by the potassium levels[J]. Industrial Crops and Products, 2017, 103:202-212.DOI: 10.1016/j.indcrop.2017.04.010.
[33]
ECONOMAKIS C D. Effect of potassium on growth and yield of Origanum dictamnus L. in solution culture[J]. Acta Horticulturae, 1993(331):339-344.DOI: 10.17660/actahortic.1993.331.46.
[34]
CHAPPELL J. Biochemistry and molecular biology of the isoprenoid biosynthetic pathway in plants[J]. Annual Review of Plant Physiology and Plant Molecular Biology, 1995,46:521-547.
[35]
陈大华, 叶和春, 李国凤, 等. 植物类异戊二烯代谢途径的分子生物学研究进展[J]. 植物学报, 2000, 42(6):551-558.
CHEN D H, YE H C, LI G F, et al. Advances in molecular biology of plant isoprenoid metabolic pathway[J]. Journal of Integrative Plant Biology, 2000, 42(6):551-558.DOI: 10.3321/j.issn:1672-9072.2000.06.001.
[36]
WEN B B, XIAO W, MU Q, et al. How does nitrate regulate plant senescence?[J]. Plant Physiology and Biochemistry, 2020, 157:60-69.DOI: 10.1016/j.plaphy.2020.08.041.
[37]
WASKO B M, SMITS J P, SHULL L W, et al. A novel bisphosphonate inhibitor of squalene synthase combined with a statin or a nitrogenous bisphosphonate in vitro [S[J]. Journal of Lipid Research, 2011, 52(11):1957-1964.DOI: 10.1194/jlr.M016089.
[38]
LIU L, WANG X, LAI Y, et al. Transcriptomic analysis reveals the significant effects of fertilization on the biosynthesis of sesquiterpenes in Phoebe bournei[J]. Genomics, 2022, 114(3):110375.DOI: 10.1016/j.ygeno.2022.110375.
[39]
王金祥, 李玲, 潘瑞炽. 高等植物中赤霉素的生物合成及其调控[J]. 植物生理学通讯, 2002, 38(1):1-8.
WANG J X, LI L, PAN R C. Gibberellin biosynthesis and its regulation in higher plants[J]. Plant Physiology Communications, 2002, 38(1):1-8.DOI: 10.13592/j.cnki.ppj.2002.01.001.
[40]
KOUKOS P K, PAPADOPOULOU K I, PATIAKA D T, et al. Chemical composition of essential oils from needles and twigs of balkan pine (Pinus peuce Grisebach) grown in Northern Greece[J]. Journal of Agricultural and Food Chemistry, 2000, 48(4):1266-1268.DOI: 10.1021/jf991012a.
[41]
PEÇANHA D A, FREITAS M S M, VIEIRA M E, et al. Phosphorus fertilization affects growth,essential oil yield and quality of true lavender in Brazil[J]. Industrial Crops and Products, 2021, 170:113803.DOI: 10.1016/j.indcrop.2021.113803.
[42]
ALVAREZ-CASTELLANOS P P, PASCUAL-VILLALOBOS M J. Effect of fertilizer on yield and composition of flowerhead essential oil of Chrysanthemum coronarium (Asteraceae) cultivated in Spain[J]. Industrial Crops and Products, 2003, 17(2):77-81.DOI: 10.1016/S0926-6690(02)00078-X.
[43]
DI SILVERIO A, BRAZZELLI V, BRANDOZZI G, et al. Prevalence of dermatophytes and yeasts (Candida spp.,Malassezia furfur) in HIV patients[J]. Mycopathologia, 1991, 114(2):103-107.DOI: 10.1007/bf00436429.
[44]
KANG Z W, LIU F H, ZHANG Z F, et al. Volatile β-ocimene can regulate developmental performance of peach aphid Myzus persicae through activation of defense responses in Chinese cabbage Brassica pekinensis[J]. Frontiers in Plant Science, 2018, 9:708.DOI: 10.3389/fpls.2018.00708.
[45]
冉慧, 冯璐璐, 毛运芝, 等. 重庆4种野生樟科植物叶片精油GC-MS鉴定及挥发性成分分析[J]. 林业科学, 2018, 54(7):91-103.
RAN H, FENG L L, MAO Y Z, et al. Identification and analysis of volatile components in essential oil from four Lauraceae wild species leaves in Chongqing by GC-MS[J]. Scientia Silvae Sinicae, 2018, 54(7):91-103.DOI: 10.11707/j.1001-7488.20180710.
[46]
曾祥谓. 我国多功能森林经营中的珍贵树种问题研究[D]. 北京: 中国林业科学研究院, 2010.
ZENG X W. Study on precious tree species in multifunctional forest management in China[D]. Beijing: Chinese Academy of Forestry, 2010.
[47]
段博莉. 樟树叶片精油及其主要成分的遗传变异规律研究[D]. 北京: 中国林业科学研究院, 2006.
DUAN B L. Study on genetic variation of essential oil and its main components in camphor leaves[D]. Beijing: Chinese Academy of Forestry, 2006.
[48]
郭淑红, 薛立, 张柔, 等. 华南地区4种林分改造树种的叶片养分季节动态[J]. 华南农业大学学报, 2011, 32(3):77-81.
GUO S H, XUE L, ZHANG R, et al. Leaf nutrient dynamics in four tree species of rehabilitated forest in South China[J]. Journal of South China Agricultural University, 2011, 32(3):77-81.DOI: 10.3969/j.issn.1001-411X.2011.03.018.
[49]
STAMP N. Out of the quagmire of plant defense hypotheses[J]. The Quarterly Review of Biology, 2003, 78(1):23-55.DOI: 10.1086/367580.
PDF(2548 KB)

Accesses

Citation

Detail

Sections
Recommended
The full text is translated into English by AI, aiming to facilitate reading and comprehension. The core content is subject to the explanation in Chinese.

/