Cloning, transcriptional activation, and tissue expression analysis of XsWRI1 from Xanthoceras sorbifolium

ZHANG Wei, LI Linkun, LIANG Chongjun, WANG Libing

JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2025, Vol. 49 ›› Issue (2) : 23-30.

PDF(3311 KB)
PDF(3311 KB)
JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2025, Vol. 49 ›› Issue (2) : 23-30. DOI: 10.12302/j.issn.1000-2006.202309001

Cloning, transcriptional activation, and tissue expression analysis of XsWRI1 from Xanthoceras sorbifolium

Author information +
History +

Abstract

【Objective】This study aimed to characterize the sequence identity, transcriptional activation potential, and functional domains of the WRINKLED1 (WRI1) transcription factor in Xanthoceras sorbifolium (yellowhorn), providing insights into its regulatory role in seed oil biosynthesis. 【Method】The full-length cDNA of XsWRI1 was cloned from endosperm tissues of mature yellowhorn using rapid amplification of cDNA ends (RACE). Bioinformatics tools were employed to analyze protein sequence properties. A recombinant pGBKT7-XsWRI1 vector was constructed and transformed into Y2HGold yeast cells to assess transcriptional activation activity. Tissue-specific expression patterns were quantified via quantitative real-time PCR (qRT-PCR) across the root, stem, leaf, petal, stamen and developing embryo tissues. 【Result】The XsWRI1 gene (GenBank accession: OR500287) spans 1 688 bp, encoding a hydrophilic and unstable protein of 414 amino acids. Yeast activity testing confirmed strong transcriptional activation activity of XsWRI1. Tissue-specific expression analysis revealed predominant XsWRI1 expression in developing embryos, with negligible levels in vegetative organs (root, stem, leaf) and reproductive structures (petal, stamen). Structural prediction identified two conserved AP2/EREBP DNA-binding domains (residues 76-148 and 177-238) and a nuclear localization signal. 【Conclusion】This study elucidates the molecular characteristics and tissue-specific regulatory role of XsWRI1 in yellowhorn, highlighting its potential function in lipid biosynthesis pathways. These findings establish a foundation for targeted genetic manipulation to enhance seed oil accumulation in woody oil crops.

Key words

Xanthoceras sorbifolium / XsWRI1 / gene cloning / transcriptional activity / tissue-specific expression / seed oil biosynthesis

Cite this article

Download Citations
ZHANG Wei , LI Linkun , LIANG Chongjun , et al. Cloning, transcriptional activation, and tissue expression analysis of XsWRI1 from Xanthoceras sorbifolium[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2025, 49(2): 23-30 https://doi.org/10.12302/j.issn.1000-2006.202309001

References

[1]
唐东慧, 阮成江, 孟婷, 等. 不同种质文冠果含油量及油中脂肪酸组成分析[J]. 中国油脂, 2017, 42(3): 77-81.
TANG D H, RUAN C J, MENG T, et al. Oil contents and fatty acid composition in different germplasm of Xanthoceras sorbifolia Bunge[J]. China Oils and Fats, 2017, 42(3): 77-81.
[2]
曹阳. 文冠果果仁含油量的测定及其果仁油脂肪酸组成分析[J]. 中国油脂, 2017, 42(6): 134-137.
CAO Y. Determination of oil content in seed kernel of Xanthoceras sorbifolia Bunge and fatty acid composition in oil[J]. China Oils and Fats, 2017, 42(6):134-137.
[3]
LIU F, WANG P, XIONG X, et al. A review of nervonic acid production in plants: prospects for the genetic engineering of high nervonic acid cultivars plants[J]. Front Plant Sci, 2021, 12: 625-626.DOI: 10.3389/fpls.2021.626625.
[4]
LIANG Q, FANG H, LIU J, et al. Analysis of the nutritional components in the kernels of yellowhorn (Xanthoceras sorbifolium Bunge) accessions[J]. J Food Compos Anal, 2021, 100: 103925.DOI: 10.1016/j.jfca.2021.103925.
[5]
MA Y, BI Q, LI G, et al. Provenance variations in kernel oil content, fatty acid profile and biodiesel properties of Xanthoceras sorbifolium Bunge in northern China[J]. Ind Crops Prod, 2020, 151: 112487.DOI: 10.1016/j.indcrop.2020.112487.
[6]
YU H Y, SIQI F, QUANXIN B, et al. Seed morphology, oil content and fatty acid composition variability assessment in yellow horn (Xanthoceras sorbifolium Bunge) germplasm for optimum biodiesel production[J]. Ind Crops Prod, 2017, 97: 425-430.DOI: 10.1016/j.indcrop.2016.12.054.
[7]
ZHAN S, JIE D, LU Y M, et al. Genetic diversity of Xanthoceras sorbifolium Bunge germplasm using morphological traits and microsatellite molecular markers[J]. PLoS ONE, 2017, 12(6): 0177577.DOI: 10.1371/journal.pone.0177577.
[8]
ZHANG H, WANG X, HE D, et al. Optimization of flavonoid extraction from Xanthoceras sorbifolia Bunge flowers, and the antioxidant and antibacterial capacity of the extract[J]. Molecules, 2021, 27(1): 113.DOI: 10.3390/molecules27010113.
[9]
HAN Y, YAN W, HOU Y, et al. Xanthoceras sorbifolia Husk extract incorporation for the improvement in physical and antioxidant properties of soy protein isolate films[J]. Foods, 2023, 12(15): 2842.DOI: 10.3390/foods12152842.
[10]
KUMAR N, CHAUDHARY A, SINGH D, et al. Transcriptional regulation of seed oil accumulation in Arabidopsis thaliana: role of transcription factors and chromatin remodelers[J]. J Plant Biochem Biot, 2020, 29(4): 754-768.DOI: 10.1007/s13562-020-00616-2.
[11]
ANDRE C, FROEHLICH J E, MOLL M R, et al. A heteromeric plastidic pyruvate kinase complex involved in seed oil biosynthesis in Arabidopsis[J]. Plant Cell, 2007, 19(6): 2006-2022.DOI: 10.1105/tpc.106.048629.
[12]
BAUD S, MENDOZA M S, TO A, et al. WRINKLED1 specifies the regulatory action of LEAFY COTYLEDON2 towards fatty acid metabolism during seed maturation in Arabidopsis[J]. Plant J, 2007, 50(5): 825-838.DOI: 10.1111/j.1365-313X.2007.03092.x.
[13]
BAUD S, WUILLÈME S, DUBREUCQ B, et al. Function of plastidial pyruvate kinases in seeds of Arabidopsis thaliana[J]. Plant J, 2007, 52(3): 405-419.DOI: 10.1111/j.1365-313X.2007.03232.x.
[14]
ADHIKARI N D, BATES P D, BROWSE J. WRINKLED1 rescues feedback inhibition of fatty acid synthesis in hydroxylase-expressing seeds[J]. Plant Physiol, 2016, 171(1): 179-191.DOI: 10.1104/pp.15.01906.
[15]
GRIMBERG Å, CARLSSON A S, MARTTILA S, et al. Transcriptional transitions in Nicotiana benthamiana leaves upon induction of oil synthesis by WRINKLED1 homologs from diverse species and tissues[J]. BMC Plant Biol, 2015, 15(1): 192.DOI: 10.1186/s12870-015-0579-1.
[16]
FOCKS N. WRINKLED1: a novel, low-seed-oil mutant of Arabidopsis with a deficiency in the seed-specific regulation of carbohydrate metabolism[J]. Plant Physiol, 1998, 118(1): 91-101.DOI: 10.1104/pp.118.1.91.
[17]
YANG F, LIU G, WU Z, et al. Cloning and functional analysis of TaWRI1Ls, the key genes for grain fatty acid synthesis in bread wheat[J]. Int J Mol Sci, 2022, 23(10): 5293.DOI: 10.3390/ijms23105293.
[18]
LIU Z J, ZHAO Y P, LIANG W, et al. Over-expression of transcription factor GhWRI1 in upland cotton[J]. Biol Plantarum, 2018, 62(2): 335-342.DOI: 10.1007/s10535-018-0777-4.
[19]
GE Y, DONG X, WU B, et al. Physiological, histological, and molecular analyses of avocado mesocarp fatty acids during fruit development[J]. J Agric Sci, 2018, 11(1): 95-104.DOI: 10.5539/jas.v11n1p95.
[20]
LI W, WANG L, QI Y, et al. Overexpression of WRINKLED1 improves the weight and oil content in seeds of flax (Linum usitatissimum L.)[J]. Front Plant Sci, 2022, 13: 1-15.DOI: 10.3389/fpls.2022.1003758.
[21]
蔡曼, 柳延涛, 王娟, 等. 植物种子油脂合成代谢及其关键酶的研究进展[J]. 中国粮油学报, 2018, 33(1): 131-139.
CAI M, LIU Y T, WANG J, et al. Research progress on anabolism and key enzymes of plant seed oil[J]. J Chinese Cereals and Oils Association, 2018, 33(1): 131-139.
[22]
丁霄, 杨淑巧, 许琦, 等. 转录因子WRI1在主要作物中的研究进展[J]. 分子植物育种, 2015, 13(3): 697-701.
DING X, YANG S Q, XU Q, et al. Progress on transcription factor WRI1 in crops[J]. Molecular Plant Breeding, 2015, 13(3): 697-701.DOI: 10.13271/j.mpb.013.000697.
[23]
LI J, CHEN C, ZENG Z, et al. SapBase (Sapinaceae Genomic DataBase): a central portal for functional and comparative genomics of Sapindaceae species[J]. BioRxiv Genom, 2022, 29: 1-7.DOI: 10.1101/2022.11.25.517904.
[24]
BADAI S S, RASID O A, PARVEEZ G A K, et al. A rapid RNA extraction method from oil palm tissues suitable for reverse transcription quantitative real-time PCR (RT-qPCR)[J]. Biotech, 2020, 10(12): 530.DOI: 10.1007/s13205-020-02514-9.
[25]
GIETZ R D, SCHIESTL R H. Large-scale high-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method[J]. Nat Protoc, 2007, 2(1): 38-41.DOI: 10.1038/nprot.2007.15.
[26]
LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method[J]. Methods, 2001, 25(4): 402-408.DOI: 10.1006/meth.2001.1262.
[27]
WANG L, RUAN C, LIU L, et al. Comparative RNA-Seq analysis of high-and low-oil yellowhorn during embryonic development[J]. Int J Mol Sci, 2018, 19(10): 3071.DOI: 10.3390/ijms19103071.
[28]
VANHERCKE T, DYER J M, MULLEN R T, et al. Metabolic engineering for enhanced oil in biomass[J]. Prog Lipid Res, 2019, 74: 103-129.DOI: 10.1016/j.plipres.2019.02.002.
[29]
SUN R, YE R, GAO L, et al. Characterization and ectopic expression of CoWRI1, an AP2/EREBP domain-containing transcription factor from coconut (Cocos nucifera L.) endosperm, changes the seeds oil content in transgenic Arabidopsis thaliana and rice (Oryza sativa L.)[J]. Front Plant Sci, 2017, 8: 63.DOI: 10.3389/fpls.2017.00063.
[30]
KONG Q, YANG Y, GUO L, et al. Molecular basis of plant oil biosynthesis: insights gained from studying the WRINKLED1 transcription factor[J]. Front Plant Sci, 2020, 11(24): 1-9.DOI: 10.3389/fpls.2020.00024.
[31]
FEI W, YANG S, HU J, et al. Research advances of WRINKLED1 (WRI1) in plants[J]. Funct Plant Biol, 2020, 47(3): 185-194. DOI: 10.1071/fp19225.
[32]
JI X J, MAO X, HAO Q T, et al. Splice variants of the Castor WRI1 gene upregulate fatty acid and oil biosynthesis when expressed in tobacco leaves[J]. Int J Mol Sci, 2018, 19(1): 146.DOI: 10.3390/ijms19010146.
[33]
MANO F, AOYANAGI T, KOZAKI A. Atypical splicing accompanied by skipping conserved micro-exons produces unique WRINKLED1, an AP2 domain transcription factor in rice plants[J]. Plants, 2019, 8(7): 207.DOI: 10.3390/plants8070207.
[34]
TANG T, DU C, SONG H, et al. Genome-wide analysis reveals the evolution and structural features of WRINKLED1 in plants[J]. Mol Genet Genomics, 2018, 294(2): 329-341.DOI: 10.1007/s00438-018-1512-8.
[35]
谢佳彤, 孙丽丹, 陈晓曼, 等. 麻风树JcWRI1基因克隆及功能分析[J]. 江苏农业学报, 2022, 38(2): 334-342.
XIE J T, SUN L D, CHEN X M, et al. Cloning and functional analysis of JcWRI1 gene from physic nut[J]. Jiangsu J Agri Sci, 2022, 38(2): 334-342.
[36]
周丽霞, 杨蒙迪, 张安妮, 等. 油棕油脂合成调控因子WRI1s的挖掘鉴定及表达分析[J]. 分子植物育种, 2024, 22(15):4905-4911.
ZHOU L X, YANG M D, ZHANG A N, et al. Identification and expression analysis of oil biosynthesis related wri1s genes in oil palm[J]. Molecular Plant Breeding, 2024, 22(15):4905-4911.DOI:10.13271/j.mpb.022.004905.
[37]
CHEN L, ZHENG Y, DONG Z, et al. Soybean (Glycine max) WRINKLED1 transcription factor, GmWRI1a, positively regulates seed oil accumulation[J]. Mol Genet Genomics, 2017, 293(2): 401-415.DOI: 10.1007/s00438-017-1393-2.
[38]
赵娜, 张媛, 王静, 等. 文冠果种子发育及油脂累积与糖类、蛋白质累积之间的关系研究[J]. 植物研究, 2015, 35(1): 133-140,145.
ZHAO N, ZHANG Y, WANG J, et al. Seed development,lipid accumulation and its relationship with carbohydrates and protein in Xanthoceras sorbifolia Bunge[J]. Bulletin of Botanical Research, 2015, 35(1): 133-140,145.
[39]
苏宁. 文冠果种实生长发育及油脂、皂苷等内含物变化规律[D]. 北京: 北京林业大学, 2020.
SU N. Fruits and seeds development and inclusions especially oil and saponinvariation in Xanthoceras sorbifolium Bunge[D]. Beijing: Beijing Forestry University, 2020.
PDF(3311 KB)

Accesses

Citation

Detail

Sections
Recommended
The full text is translated into English by AI, aiming to facilitate reading and comprehension. The core content is subject to the explanation in Chinese.

/