The variation characteristics of particulate organic carbon and mineral-associated organic carbon during the development of Metasequoia glyptostroboides plantations

ZHAI Ningning, SHI Ke, RUAN Honghua, NI Juanping, FANG Yu, CAO Guohua, SHEN Caiqin, XU Yaming, HUO Jianjun

JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2025, Vol. 49 ›› Issue (3) : 25-32.

PDF(2212 KB)
PDF(2212 KB)
JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2025, Vol. 49 ›› Issue (3) : 25-32. DOI: 10.12302/j.issn.1000-2006.202309037

The variation characteristics of particulate organic carbon and mineral-associated organic carbon during the development of Metasequoia glyptostroboides plantations

Author information +
History +

Abstract

【Objective】Plantations play significant roles in mitigating climate change. Understanding the dynamics of soil organic carbon (SOC), particularly through its key components—particulate organic carbon (POC) and mineral-associated organic carbon (MAOC)—is crucial for predicting carbon sequestration in soil.【Method】This study investigated Metasequoia glyptostroboides plantations of varying ages (7, 16, 21, 26, 31, 36, 42 and 46 a) located in the Dongtai Forest Farm, Jiangsu Province. For each forest age, four replicated field plots were established, and soil samples were collected from five distinct depths: [0, 20), [20, 40), [40, 60), [60, 80), and [80, 100) cm. A range of soil physicochemical properties—including pH, ammonium nitrogen, nitrate nitrogen, total phosphorus, and available phosphorus—along with SOC fractions (POC and MAOC) were measured to examine the variation in POC and MAOC with the development of the plantations.【Result】POC in the [0, 20) cm soil layer was the dominant contributor to the soil organic carbon pool, and its accumulation was enhanced during the plantation’s development. Conversely, MAOC was the predominant fraction in the [20, 40) cm soil layer, but its response to stand age and development was less pronounced. As the forest age increased, the stability of SOC in the [0, 20) cm layer declined, making it more susceptible to decomposition and utilization. In contrast, SOC stability in the [20, 100) cm layers remained higher, supporting longer-term organic carbon storage. Correlation analysis revealed that POC was more responsive to environmental changes driven by stand development compared to MAOC.【Conclusion】As plantations mature, soil organic carbon accumulates primarily in the surface layer [(0, 20) cm] in the form of POC. The greatest accumulation occurs during the over-mature stage of the forest. Long-term plantation development significantly enhances the accumulation and retention of different fractions of surface soil organic carbon. Therefore, extending the primary cutting age of plantations would further optimize their role in mitigating global climate change.

Key words

Metasequoia glyptostroboides plantations / particulate organic carbon(POC) / mineral-associated organic carbon(MAOC) / stand development / deep soil

Cite this article

Download Citations
ZHAI Ningning , SHI Ke , RUAN Honghua , et al . The variation characteristics of particulate organic carbon and mineral-associated organic carbon during the development of Metasequoia glyptostroboides plantations[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2025, 49(3): 25-32 https://doi.org/10.12302/j.issn.1000-2006.202309037

References

[1]
FIGUERES C, SCHELLNHUBER H J, WHITEMAN G, et al. Three years to safeguard our climate[J]. Nature, 2017, 546(7660):593-595.DOI: 10.1038/546593a.
[2]
BALESDENT J, BASILE-DOELSCH I, CHADOEUF J, et al. Atmosphere-soil carbon transfer as a function of soil depth[J]. Nature, 2018, 559(7715):599-602.DOI: 10.1038/s41586-018-0328-3.
[3]
JOBBAGY E G, JACKSON R B. The vertical distribution of soil organic carbon and its relation to climate and vegetation[J]. Ecological Applications, 2000, 10(2):423.DOI: 10.2307/2641104.
[4]
MATHIEU J A, HATTÉ C, BALESDENT J, et al. Deep soil carbon dynamics are driven more by soil type than by climate:a worldwide meta-analysis of radiocarbon profiles[J]. Global Change Biology, 2015, 21(11):4278-4292.DOI: 10.1111/gcb.13012.
[5]
LUO Z K, WANG G C, WANG E L. Global subsoil organic carbon turnover times dominantly controlled by soil properties rather than climate[J]. Nature Communications, 2019, 10(1):3688.DOI: 10.1038/s41467-019-11597-9.
[6]
LAVALLEE J M, SOONG J L, COTRUFO M F. Conceptualizing soil organic matter into particulate and mineral-associated forms to address global change in the 21st Century[J]. Global Change Biology, 2020, 26(1):261-273.DOI: 10.1111/gcb.14859.
[7]
LI W, ZHENG Z C, LI T X, et al. Effect of tea plantation age on the distribution of soil organic carbon fractions within water-stable aggregates in the hilly region of western Sichuan,China[J]. Catena, 2015, 133:198-205.DOI: 10.1016/j.catena.2015.05.017.
[8]
GUO J, WANG B, WANG G B, et al. Effects of three cropland afforestation practices on the vertical distribution of soil organic carbon pools and nutrients in eastern China[J]. Global Ecology and Conservation, 2020,22:e00913.DOI: 10.1016/j.gecco.2020.e00913.
[9]
COTRUFO M F, RANALLI M G, HADDIX M L, et al. Soil carbon storage informed by particulate and mineral-associated organic matter[J]. Nature Geoscience, 2019,12:989-994.DOI: 10.1038/s41561-019-0484-6.
[10]
FERREIRA G W D, OLIVEIRA F C C, SOARES E M B, et al. Retaining eucalyptus harvest residues promotes different pathways for particulate and mineral-associated organic matter[J]. Ecosphere, 2021, 12(3):e03439.DOI: 10.1002/ecs2.3439.
[11]
MIDWOOD A J, HANNAM K D, GEBRETSADIKAN T, et al. Storage of soil carbon as particulate and mineral associated organic matter in irrigated woody perennial crops[J]. Geoderma, 2021,403:115185.DOI: 10.1016/j.geoderma.2021.115185.
[12]
WAN P, PENG H, JI X L, et al. Effect of stand age on soil microbial communities of a plantation Ormosia hosiei forest in southern China[J]. Ecological Informatics, 2021,62:101282.DOI: 10.1016/j.ecoinf.2021.101282.
[13]
SHI K, LIAO J H, ZOU X M, et al. Accumulation of soil microbial extracellular and cellular residues during forest rewilding:implications for soil carbon stabilization in older plantations[J]. Soil Biology and Biochemistry, 2024,188:109250.DOI: 10.1016/j.soilbio.2023.109250.
[14]
胡建文, 刘常富, 勾蒙蒙, 等. 林龄对马尾松人工林微生物残体碳积累的影响机制[J]. 应用生态学报, 2024, 35(1):153-160.
HU J W, LIU C F, GOU M M, et al. Influencing mechanism of stand age to the accumulation of microbial residue carbon in the Pinus massoniana plantations[J]. Chinese Journal of Applied Ecology, 2024, 35(1):153-160.DOI: 10.13287/j.1001-9332.202401.041.
[15]
问宇翔, 冯坤乔, 童冉, 等. 水杉人工林细根和粗根碳氮磷计量特征对N添加的响应[J]. 林业科学研究, 2022, 35(3):161-168.
WEN Y X, FENG K Q, TONG R, et al. Response of C,N,P stoichiometry of fine and coarse roots of Metasequoia glyptostroboides plantation to nitrogen addition[J]. Forestry Research, 2022, 35(3):161-168.DOI: 10.13275/j.cnki.lykxyj.2022.03.018.
[16]
庄红蕾. 上海崇明岛水杉人工林生态系统碳动态研究[D]. 上海: 上海交通大学, 2012.
ZHUANG H L. Study on the Carbon Dynamic of Metasequoia glyptostroboides plantation ecosystems in Chongming Island, Shanghai[D]. Shanghai: Shanghai Jiao Tong University, 2012.
[17]
李佩聪. 环境水体中基于邻苯基苯酚:靛酚蓝分光光度法的铵氮测定新方法的研究和应用[D]. 厦门大学, 2019.
LI P C. Study and application of the indophenol method for the determination of ammonium in natural waters using o-phenylphenol[D]. Xiamen: Xiamen University, 2019.
[18]
国家海洋局. 海洋监测规范第4部分:海水分析:GB 17378.4—2007[S]. 北京: 中国标准出版社, 2008.
State Ocean Administration of the PRC. The specification for marine monitoring:part 4:seawater analysis:GB 17378.4—2007[S]. Beijing: Standards Press of China, 2008.
[19]
国家林业局. 森林土壤磷的测定:LY/T 1232—2015[S]. 北京: 中国标准出版社, 2016.
State Forestry Administration of State Ocean Administration of the PRC. Phosphorus determination methods of forest soils:LY/T 1232—2015[S]. Beijing: Standards Press of China, 2016.
[20]
索伦嘎. 围封对羊草草原植被—土壤特征的影响:聚焦土壤有机碳组分变化[D]. 呼和浩特: 内蒙古大学, 2022.
SUO L G. Effects of enclosure on vegetation-soil features of the Leymus chinensis grassland:emphasizing the changes in soil organic carbon fractions[D]. Hohhot: Inner Mongolia University, 2022.DOI: 10.27224/d.cnki.gnmdu.2022.001508.
[21]
WANG C Q, XUE L, JIAO R Z. Soil organic carbon fractions,C-cycling associated hydrolytic enzymes,and microbial carbon metabolism vary with stand age in Cunninghamia lanceolate (Lamb.) Hook plantations[J]. Forest Ecology and Management, 2021,482:118887.DOI: 10.1016/j.foreco.2020.118887.
[22]
肖春波, 王海, 范凯峰, 等. 崇明岛不同年龄水杉人工林生态系统碳储量的特点及估测[J]. 上海交通大学学报(农业科学版), 2010, 28(1):30-34.
XIAO C B, WANG H, FAN K F, et al. Carbon storage of Metasequoia glyptostroboides plantation ecosystems at different age stages in Chongming Island,east China[J]. Journal of Shanghai Jiaotong University (Agricultural Science), 2010, 28(1):30-34.DOI: 10.3969/j.issn.1671-9964.2010.01.006.
[23]
谢天时. 不同林龄水杉人工林群落特征比较研究[J]. 福建林业科技, 2007, 34(2):19-23.
XIE T S. A study on the comparision of community characteristic between different age Metasequoia glyptostroboides plantations[J]. Journal of Fujian Forestry Science and Technology, 2007, 34(2):19-23.DOI: 10.13428/j.cnki.fjlk.2007.02.005.
[24]
ZHANG L, ZHANG P, YU M K, et al. Soil organic carbon content and stocks in an age-sequence of Metasequoia glyptostroboides plantations in coastal area,east China[C]// Proceedings of the 2015 4th International Conference on Sustainable Energy and Environmental Engineering.December 20-21,2015.Shenzhen,China;Paris, France: Atlantis Press, 2016.DOI: 10.2991/icseee-15.2016.178.
[25]
江苏省林业局. 江苏省森林资源规划设计调查操作细则[Z]. 南京:江苏省林业局, 2007.
Forestry Bureau of Jiangsu Province. Operation rules of forest resources planning and design survey of Jiangsu Province[Z]. Nanjing: Forestry Bureau of Jiangsu Province, 2007.
[26]
LAJTHA K, TOWNSEND K L, KRAMER M G, et al. Changes to particulate versus mineral-associated soil carbon after 50 years of litter manipulation in forest and prairie experimental ecosystems[J]. Biogeochemistry, 2014, 119(1):341-360.DOI: 10.1007/s10533-014-9970-5.
[27]
刘江伟, 徐海东, 林同岳, 等. 海涂围垦区不同林分土壤活性有机碳垂直变化特征[J]. 林业科学研究, 2022, 35(3):18-26.
LIU J W, XU H D, LIN T Y, et al. Vertical variation patterns in soil labile organic carbon in different stands in coastal reclamation area[J]. Forestry Research, 2022, 35(3):18-26.DOI: 10.13275/j.cnki.lykxyj.2022.03.003.
[28]
MIKUTTA R, TURNER S, SCHIPPERS A, et al. Microbial and abiotic controls on mineral-associated organic matter in soil profiles along an ecosystem gradient[J]. Scientific Reports, 2019, 9(1):10294.DOI: 10.1038/s41598-019-46501-4.
[29]
侯超, 张申平, 马跃龙. 特异性乳糖酶的开发研究进展[J]. 生物加工过程, 2024, 22(1):81-88.
HOU C, ZHANG S P, MA Y L. Progress on development of characteristic lactase[J]. Chinese Journal of Bioprocess Engineering, 2024, 22(1):81-88. DOI:10.3969/j.issn.1672-3678.2024.01.011.
[30]
VOGEL C, HEISTER K, BUEGGER F, et al. Clay mineral composition modifies decomposition and sequestration of organic carbon and nitrogen in fine soil fractions[J]. Biology and Fertility of Soils, 2015, 51(4):427-442.DOI: 10.1007/s00374-014-0987-7.
[31]
曹国华, 姚继周, 杨鑫, 等. 水杉人工林细根形态及生物量分布规律[J]. 安徽农业科学, 2016, 44(2):9-11.
CAO G H, YAO J Z, YANG X, et al. Morphology of fine roots of Metasequoia glyptostroboides plantation and its biomass distribution laws[J]. Journal of Anhui Agricultural Sciences, 2016, 44(2):9-11.DOI: 10.13989/j.cnki.0517-6611.2016.02.004.
[32]
KEILUWEIT M, BOUGOURE J J, NICO P S, et al. Mineral protection of soil carbon counteracted by root exudates[J]. Nature Climate Change, 2015,5:588-595.DOI: 10.1038/nclimate2580.
[33]
ROCCI K S, LAVALLEE J M, STEWART C E, et al. Soil organic carbon response to global environmental change depends on its distribution between mineral-associated and particulate organic matter:a meta-analysis[J]. Science of The Total Environment, 2021,793:148569.DOI: 10.1016/j.scitotenv.2021.148569.
[34]
RUMPEL C, KÖGEL-KNABNER I. Deep soil organic matter: a key but poorly understood component of terrestrial C cycle[J]. Plant and Soil, 2011, 338(1):143-158.DOI: 10.1007/s11104-010-0391-5.
[35]
BOUNOUARA Z, CHEVALLIER T, BALESDENT J, et al. Variation in soil carbon stocks with depth along a toposequence in a sub-humid climate in north Africa (Skikda,Algeria)[J]. Journal of Arid Environments, 2017, 141:25-33.DOI: 10.1016/j.jaridenv.2017.02.001.
[36]
CARDINAEL R, CHEVALLIER T, BARTHÈS B G, et al. Impact of alley cropping agroforestry on stocks,forms and spatial distribution of soil organic carbon: a case study in a Mediterranean context[J]. Geoderma, 2015, 259/260:288-299.DOI: 10.1016/j.geoderma.2015.06.015.
[37]
MONI C, RUMPEL C, VIRTO I, et al. Relative importance of sorption versus aggregation for organic matter storage in subsoil horizons of two contrasting soils[J]. European Journal of Soil Science, 2010, 61(6):958-969.DOI: 10.1111/j.1365-2389.2010.01307.x.
[38]
FANG H J, CHENG S L, YU G R, et al. Nitrogen deposition impacts on the amount and stability of soil organic matter in an alpine meadow ecosystem depend on the form and rate of applied nitrogen[J]. European Journal of Soil Science, 2014, 65(4):510-519.DOI: 10.1111/ejss.12154.
[39]
SOONG J L, FUCHSLUEGER L, MARAÑON-JIMENEZ S, et al. Microbial carbon limitation:the need for integrating microorganisms into our understanding of ecosystem carbon cycling[J]. Global Change Biology, 2020, 26(4):1953-1961.DOI: 10.1111/gcb.14962.
[40]
DING W L, CONG W F, LAMBERS H. Plant phosphorus-acquisition and-use strategies affect soil carbon cycling[J]. Trends in Ecology & Evolution, 2021, 36(10):899-906.DOI: 10.1016/j.tree.2021.06.005.
PDF(2212 KB)

Accesses

Citation

Detail

Sections
Recommended
The full text is translated into English by AI, aiming to facilitate reading and comprehension. The core content is subject to the explanation in Chinese.

/