
Heterosis and drought resistance assessment of Populus simonii × P. nigra F1 hybrids based on growth traits and leaf anatomical structures
ZHANG Weixi, DING Mi, SU Xiaohua, LI Aiping, WANG Xiaojiang, YU Jinjin, LI Zhenghong, HUANG Qinjun, DING Changjun
JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2025, Vol. 49 ›› Issue (1) : 46-58.
Heterosis and drought resistance assessment of Populus simonii × P. nigra F1 hybrids based on growth traits and leaf anatomical structures
【Objective】30 F1 hybrids of Populus simonii (from Tongliao, Inner Mongolia) × P. nigra (from northern Netherland) were used as experimental materials in this study. Aimed to comprehensive evaluate the growth and leaf anatomical structure traits of the F1 hybrids under natural semi-arid conditions, which will provide a basis for selecting poplar varieties with strong drought tolerance adaptability and utilizing parental resources. 【Method】 Differences, genetic variation analysis, and heterosis analysis were conducted on the growth traits of F1 hybrids at four, five, six years and nine leaf anatomical structure traits at six years. Correlation analysis was used to evaluate the correlation of each parameter. The principal component analysis was used to screen typical leaf anatomical structure traits. The membership function method was used to comprehensively evaluate the drought tolerance. 【Result】Growth traits and leaf anatomical structures were significant different among F1 hybrids. The coefficient of variative (CV) of tree height (H) and diameter at breast height (DBH) is 17.28%-19.24% and 28.22%-29.87%, respectively. The H and DBH of F1 hybrids at different ages are significantly higher than those of their parents, with a high-parent heterosis rate (RHb) 29.27%-36.83%. Partial hybrid clones have exhibited high-parent heterosis (Hb) at H and DBH. The CV of leaf anatomical structure traits is 5.78%-18.82%, with repeatability of which is 0.91-0.97. F1 hybrids showed a significant positive mid-parent heterosis in lower epidermis thickness, thickness ratio of palisade to spongy, compaction of leaf tissue, thickness of palisade tissue, and a significant positive Hb in cuticle thickness, lower epidermis thickness and compaction of leaf tissue, with RHb of 1.34%-1.77%. There is a high correlation between various indicators, and compaction of leaf tissue, cuticle thickness, compaction of leaf tissue, palisade/spongy and thickness of spongy tissue were ultimately selected as the main component indicators of leaf anatomical structures for evaluating drought resistance of F1 hybrids. Six clones (02-06, 02-01, 02-05, 02-24, 02-03, 02-13) with potential of growth and drought tolerance were ultimately selected. 【Conclusion】 Growth traits and leaf anatomical structure varied greatly in F1 hybrids of P. simonii× P. nigra, which have great potential of selection and heterosis. Anatomical structure of leaves could be used to evaluate drought resistance of F1 hybrids. Six clones (02-06, 02-01, 02-05, 02-24, 02-03, 02-13) with potential of fast growth and drought toterlance were initially selected. These results can provide candidate clones and important information of selecting breeding parents for breeding new high-yield and high resistance poplar varieties in arid areas.
Populus simonii × P. nigra / growth / leaf anatomical structures / genetic variation / heterosis
[1] |
|
[2] |
苏晓华, 丁昌俊, 马常耕. 我国杨树育种的研究进展及对策[J]. 林业科学研究, 2010, 23(1):31-37.
|
[3] |
丁昌俊, 张伟溪, 高暝, 等. 不同生长势美洲黑杨转录组差异分析[J]. 林业科学, 2016, 52(3):47-58.
|
[4] |
陈晓杰, 杨保安, 范家霖, 等. 小麦杂种优势利用研究进展[J]. 种子, 2022, 41(1): 66-73.
|
[5] |
康向阳. 林木遗传育种研究进展[J]. 南京林业大学学报(自然科学版), 2020, 44(3):1-10.
|
[6] |
陈赢男, 韦素云, 曲冠正, 等. 现代林木育种关键核心技术研究现状与展望[J]. 南京林业大学学报(自然科学版), 2022, 46(6):1-9.
|
[7] |
王瑞文, 黄国伟, 李振芳, 等. 黑杨派杨树不同杂交组合F1代遗传分析及苗期选择[J]. 中国农学通报, 2017, 33(10):48-52.
|
[8] |
杜克兵, 许林, 沈宝仙, 等. 黑杨派杨树杂交子代的遗传分析及苗期选择[J]. 华中农业大学学报, 2009, 28(5):624-630.
|
[9] |
高暝, 黄秦军, 丁昌俊, 等. 美洲黑杨及其杂种F1不同生长势无性系叶片δ13C和氮素利用效率[J]. 林业科学, 2013, 49(8):51-57.
|
[10] |
高暝, 丁昌俊, 苏晓华, 等. 美洲黑杨及其杂种F1无性系光合特性的研究[J]. 林业科学研究, 2014, 27(6):721-728.
|
[11] |
孙佩, 姬慧娟, 张亚红, 等. 丹红杨×通辽1号杨杂交子代苗期抗旱性初步评价[J]. 植物遗传资源学报, 2019, 20(2):297-308.
|
[12] |
周志春, 金国庆, 秦国峰, 等. 马尾松纸浆材重要经济性状配合力及杂种优势分析[J]. 林业科学, 2004, 40(4):52-57.
|
[13] |
沈乐, 徐建民, 李光友, 等. 尾叶桉与巨桉杂种F1代生长性状遗传分析[J]. 林业科学, 2019, 55(7):68-76.
|
[14] |
贾庆彬, 刘庚, 赵佳丽, 等. 红松半同胞家系生长性状变异分析与优良家系选择[J]. 南京林业大学学报(自然科学版), 2022, 46(2): 109-116.
|
[15] |
王云鹏, 张蕊, 周志春, 等. 10年生木荷生长和材性性状家系变异及选择[J]. 南京林业大学学报(自然科学版), 2020, 44(5):85-92.
|
[16] |
吕义, 刘扬, 方升佐, 等. 南方型杨树无性系间生长性状和木材材性的遗传差异[J]. 南京林业大学学报(自然科学版), 2018, 42(6):20-26.
|
[17] |
张庆源, 田野, 王淼, 等. 美洲黑杨与青杨杂交F1 代苗期表型性状的分化及其类型划分[J]. 南京林业大学学报(自然科学版), 2022, 46(5): 40-48.
|
[18] |
|
[19] |
|
[20] |
|
[21] |
常英俏, 徐文远, 穆立蔷, 等. 干旱胁迫对3种观赏灌木叶片解剖结构的影响及抗旱性分析[J]. 东北林业大学学报, 2012, 40(3):36-40.
|
[22] |
|
[23] |
|
[24] |
于海燕, 胡潇予, 何春霞, 等. 文冠果不同种源叶片结构对水分胁迫的差异性响应[J]. 北京林业大学学报, 2019, 41(1): 57-63.
|
[25] |
曹林青, 钟秋平, 罗帅, 等. 干旱胁迫下油茶叶片结构特征的变化[J]. 林业科学研究, 2018, 31(3):136-143.
|
[26] |
何凤, 杜红岩, 刘攀峰, 等. 干旱胁迫对杜仲叶片结构特征的影响[J]. 植物研究, 2021, 41(6): 947-956.
|
[27] |
郭文文, 卓么草, 周尧治. 西藏高原硬叶柳叶片结构对寒旱环境的适应机制[J]. 西北植物学报, 2019, 39(5):784-790.
|
[28] |
马红英, 吕小旭, 计雅男, 等. 17种锦鸡儿属植物叶片解剖结构及抗旱性分析[J]. 水土保持研究, 2020, 27(1):340-346,352.
|
[29] |
范志霞, 陈越悦, 付荷玲. 成都地区10种园林灌木叶片结构与抗旱性关系研究[J]. 植物科学学报, 2019, 37(1):70-78.
|
[30] |
王烟霞, 樊军锋, 程玮哲, 等. 基于叶片解剖结构的12个杨树无性系抗旱性分析[J]. 西北农林科技大学学报(自然科学版), 2021, 49(11):147-154.
|
[31] |
曹佳乐. 银白杨×毛白杨新杂种无性系抗寒性与叶片旱生结构研究[D]. 杨凌: 西北农林科技大学, 2016.
|
[32] |
黄绢, 陈存, 张伟溪, 等. 干旱胁迫对转JERF36银中杨苗木叶片解剖结构及光合特性的影响[J]. 林业科学, 2017, 53(5):8-15.
|
[33] |
丁昌俊, 黄秦军, 张冰玉, 等. 北方型美洲黑杨不同无性系重要性状评价[J]. 林业科学研究, 2016, 29(3):331-339.
|
[34] |
刘红茹, 冯永忠, 王得祥, 等. 延安城区10种阔叶园林植物叶片结构及其抗旱性评价[J]. 西北植物学报, 2012, 32(10):2053-2060.
|
[35] |
朱栗琼, 李吉跃, 招礼军. 六种阔叶树叶片解剖结构特征及其耐旱性比较[J]. 广西植物, 2007, 27(3):431-434,474.
|
[36] |
|
[37] |
|
/
〈 |
|
〉 |