
Response of Carabidae insects in different habitats of broad-leaved mixed forest and adjacent Pinus koraiensis plantation forest
WANG Jiasheng, TONG Jiaqi, ZHAO Hongrui, LIU Wanting, ZHANG Jiahang
JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2025, Vol. 49 ›› Issue (5) : 200-208.
Response of Carabidae insects in different habitats of broad-leaved mixed forest and adjacent Pinus koraiensis plantation forest
【Objective】To characterize the community structure and diversity of Carabidae insects in different habitats in broad-leaved mixed forest and adjacent Pinus koraiensis plantation forest following farmland conversion to forests, to identify indicator or monitor species to investigate the edge effect in the study area and to elucidate the role of P. koraiensis plantation forests in the maintenance of diversity.【Method】During May to September in 2017 and 2018, the study area was divided into three habitats—Pinus koraiensis plantation forest, ecotone, and broad-leaved mixed forest-based on distance gradients. Using the pitfall trapping method, 27 pitfall traps were deployed in each habitat to continuously trap and collect Carabidae insects over two years. Collected specimens were subsequently classified and identified based on morphological characteristics. One-way ANOVA was used to assess differences in Carabidae insects community structure and α-diversity indices. Pearson correlation coefficients were employed to examine correlations among these α-diversity indices. Hill diversity rarefaction and extrapolation analyses were conducted to characterize trends in the number of species, common species, and dominant species in relation to the number of individuals. For β-diversity, NMDS, PERMANOVA, and SIMPER were applied. Indicator species were identified using IndVal indices.【Result】A total of 3 755 Carabidae insects of 41 species from nine subfamilies were captured, there were 1 037 Carabidae insects of 34 species from eight subfamilies in the P. koraiensis plantation forest, 1 643 Carabidae insects of 38 species from nine subfamilies in ecotone, 1 075 Carabidae insects of 32 species from nine subfamilies in the broad-leaved mixed forest, there were all 29 species in three habitats. The number of individuals of Carabinae in broad-leaved mixed forest was significantly higher than that the other two habitats (P<0.05), the number of individuals of Harpalinae in the P. koraiensis plantation forest was significantly higher than in that broad-leaved mixed forests (P<0.05), the number of individuals of Licininae in ecotone was significantly higher than that in the broad-leaved mixed forests (P<0.05), the number of individuals of Platyninae in ecotone was significantly higher than that in the other two habitats (P<0.05). The number of species of Harpalinae and Panagaeinae in broad-leaved mixed forests were significantly lower than that in the other two habitats (P<0.05), the number of species of Pterostichinae in ecotone was significantly higher than that in the other two habitats (P<0.05). Rarefaction and extrapolation of Hill diversity showed that although ecotone had the highest number of species, P. koraiensis plantation forest had the highest number of common and dominant species. Among α diversity indices, the number of individuals in ecotone was significantly higher than that in the other two habitats (P<0.05), the number of species, Chao1 index and ACE index in ecotone were significantly higher than those in broad-leaved mixed forests (P<0.05), Margalef index in broad-leaved mixed forests was significantly lower than that in the other two habitats (P<0.05), and many indices were are significantly correlated with the number of species (P<0.05). NMDS and PERMANOVA showed significant differences in community structure in different habitats (P<0.05), SIMPER showed Licininae and Carabinae had large contribution to differences in different community structure. IndVal index showed no indicator and monitor species in P. koraiensis plantation forest,four monitor species in ecotone, and two indicator species in broad-leaved mixed forest. The edge effect was weakly positive overall in the study area.【Conclusion】Differences in the community structure and diversity of Carabidae insects across habitats suggest distinct habitat preferences among different taxa, which are closely linked to their ecological behaviors. Notably, the finding that Carabidae insects exhibited a strong tendency to inhabit ecotones further corroborates with the presence of a positive edge effect for this group in the study area. The highest number of common and dominant species observed in P. koraiensis plantation forests indicates that these plantations play a critical role in maintaining local biodiversity. Additionally, given the multiple indicator and monitoring species identified in both ecotones and broad-leaved mixed forests, a multi-species monitoring approach is recommended to effectively assess habitat conditions.
Carabidae / biodiversity / broad-leaved mixed forest / Pinus koraiensis plantation / edge effect / ecotone / indicator species
[1] |
邵全琴, 樊江文, 刘纪远, 等. 重大生态工程生态效益监测与评估研究[J]. 地球科学进展, 2017, 32(11):1174-1182.
|
[2] |
张利, 高晓东, 张志博, 等. 基于YOLOv8的陕西黄土高原刺槐林枯立木识别[J]. 林业工程学报, 2024, 9(4):112-121.
|
[3] |
|
[4] |
|
[5] |
刘生冬, 孟昕, 孟庆繁, 等. 阔叶红松林不同林分对地表甲虫群落的影响[J]. 林业科学, 2018, 54(2):110-118.
|
[6] |
|
[7] |
|
[8] |
颜铮明, 阮宏华, 廖家辉, 等. 不同林龄杨树人工林地表甲虫群落多样性特征[J]. 南京林业大学学报(自然科学版), 2023, 47(6):236-242.
|
[9] |
李丹春, 付作霖, 罗子渝, 等. 白龙江林区地表甲虫沿海拔梯度的群落结构及动态分析[J]. 应用昆虫学报, 2022, 59(1):193-202.
|
[10] |
|
[11] |
施莹, 张华麟, 关西越, 等. 长白山西坡苔原带地表甲虫群落结构分析[J]. 吉林农业大学学报, 2020, 42(2):141-147.
|
[12] |
边振兴, 吴佳璇, 杨玉静, 等. 非耕作生境对相邻耕地步甲和蜘蛛分布影响的差异性[J]. 中国生态农业学报(中英文), 2023, 31(7):1026-1037.
|
[13] |
冯怡琳, 杨竟艺, 王永珍, 等. 祁连山国家公园煤矿修复对地表节肢动物多样性的影响[J]. 生态学报, 2024, 44(4):1575-1587.
|
[14] |
林永一, 王永珍, 冯怡琳, 等. 河西走廊中部戈壁地表甲虫群落动态变化及其影响因素[J]. 生物多样性, 2022, 30(12):72-83.
|
[15] |
马美轩, 宋悦心, 桑卫国, 等. 大兴安岭地区兴安落叶松林步甲群落多样性时间动态分析[J]. 生态学报, 2021, 41(24):9910-9919.
|
[16] |
董六文, 韩佳龙, 赵文智, 等. 黑河流域湖泊湿地及毗邻沙丘地表节肢动物群落结构比较[J]. 中国沙漠, 2020, 40(6):250-258.
|
[17] |
|
[18] |
|
[19] |
陈光志, 赵洪雁. 湾沟林业局退耕还林工程实施情况及几点做法[J]. 吉林林业科技, 2004, 33(5):18-20.
|
[20] |
李占君, 马珂, 徐宜彬, 等. 表面活性剂诱导红松种鳞油脂和原花青素超声提取工艺[J]. 森林工程, 2024, 40(1):160-170.
|
[21] |
刘明睿, 贾炜玮. 基于地基雷达数据构建红松人工林树高、枝下高及接触高模型[J]. 森林工程, 2024, 40(1):26-36.
|
[22] |
仇逊超, 张春越, 张怡卓, 等. 流形学习在红松籽仁蛋白质含量近红外检测中的应用[J]. 江苏农业学报, 2023, 39(1):246-254.
|
[23] |
魏亚伟, 张彤, 刘静, 等. 红松叶片与土壤有机碳、氮、磷、钙的空间分布及其化学计量学特征[J]. 沈阳农业大学学报, 2021, 52(4):419-427.
|
[24] |
谭凌照, 范春雨, 范秀华. 吉林蛟河阔叶红松林木本植物物种多样性及群落结构与生产力的关系[J]. 植物生态学报, 2017, 41(11):1149-1156.
|
[25] |
|
[26] |
|
[27] |
|
[28] |
|
[29] |
|
[30] |
|
[31] |
韩艺茹, 薛琪琪, 宋厚娟, 等. 燕山地区访花昆虫多样性及其影响因子[J]. 生物多样性, 2022, 30(3):48-59.
|
[32] |
李静纳, 林仲桂, 魏甲彬, 等. 不同品系黑老虎田间节肢动物的群落结构与多样性[J]. 江苏农业学报, 2024, 40(3):415-426.
|
[33] |
刘欢欢, 李晨阳, 李梦莉, 等. 广西马尾松人工林与毗邻天然林昆虫群落组成及多样性研究[J]. 西南林业大学学报(自然科学), 2024, 44(2):144-154.
|
[34] |
刘静如, 曹艺, 李晗, 等. 四川低山丘陵区香樟和马尾松凋落叶分解进程中土壤节肢动物多样性[J]. 林业科学, 2021, 57(11):119-133.
|
[35] |
马美轩. 中国北方温带森林不同林分步甲多样性分布特征及指示作用研究[D]. 北京: 中央民族大学, 2022.
|
[36] |
段曼微, 李香, 周阳, 等. 基于蛾类多样性研究人工林斑块的边缘效应[J]. 生物多样性, 2023, 31(5):65-75.
|
[37] |
刘生冬, 孟昕, 孟庆繁, 等. 吉林蛟河阔叶红松林中甲虫(鞘翅目)群落时间动态分析[J]. 林业科学, 2018, 54(10):80-88.
|
[38] |
郭瑞, 王义平, 翁东明, 等. 浙江清凉峰不同植物群落步甲物种多样性及其与环境因子的关系[J]. 浙江农林大学学报, 2016, 33(4):551-557.
|
/
〈 |
|
〉 |