Evaluation of dust retention effect of six common ornamental bamboo species in urban parks

WANG Ruihan, ZHANG Qingping

Journal of Nanjing Forestry University (Natural Sciences Edition) ›› 2025, Vol. 49 ›› Issue (6) : 231-237.

PDF(3717 KB)
PDF(3717 KB)
Journal of Nanjing Forestry University (Natural Sciences Edition) ›› 2025, Vol. 49 ›› Issue (6) : 231-237. DOI: 10.12302/j.issn.1000-2006.202402023

Evaluation of dust retention effect of six common ornamental bamboo species in urban parks

Author information +
History +

Abstract

【Objective】The deepening of urbanization has resulted in a significant separation between humans and the natural environment, and urban gardens have become the most convenient and accessible health and wellness spaces for residents. This study focused on six kinds of bamboo commonly found in urban gardens. The dust retention capacities were compared, to provide a scientific basis for the development and design of bamboo forest therapy in gardens.【Method】Quadrats were set according to the size of bamboo in urban parks, and three plants from each quadrat were randomly selected to cut flush with the ground to measure individual parameters. The area of 100 randomly selected leaves per plant was measured using a laser leaf area instrument. After continuous rain for seven days, 100 leaves were randomly collected to determine the dust content by dust fall analysis method. The surface microstructure of the leaves were observed using scanning electron microscopy.【Result】Among the six selected bamboos, Phyllostachys edulis exhibited the highest individual parameters (height, ground diameter, and fresh weight), followed by Phyllostachys nigra, Bambusa multiplex, then Bambusa multiplex cv. Fernleaf and Indocalamus latifolius, and lastly Pleioblastus fortunei. The highest leaf area index was found in Bambusa multiplex, followed by Phyllostachys edulis, Pleioblastus fortunei, Bambusa multiplex cv. Fernleaf, Phyllostachys nigra and Indocalamus latifolius. In terms of leaf adsorption capacity, the balance dust retention capacity of Pleioblastus fortunei and Indocalamus latifolius was relatively high, reaching 8.7 g/m2 and 8.2 g/m2, respectively, while the balance dust retention capacities of Bambusa multiplex, Phyllostachys edulis, Bambusa multiplex cv. Fernleaf and Phyllostachys nigra ranged from 6.2 g/m2 to 7.3 g/m2. Scanning electron microscopy showed that there was obvious punctiform and textured protrusions on the back of the leaves of all six bamboos, distributed in parallel to form grooves. The grooves of Indocalamus latifolius were the widest, followed by Pleioblastus fortunei and Bambusa multiplex, then Phyllostachys nigra and Bambusa multiplex cv. Fernleaf.【Conclusion】According to the individual morphology and planting characteristics of different bamboos, Indocalamus latifolius had the highest actual dust retention capacity (up to 77.43 g/m2) in the actual environment, followed by Bambusa multiplex, Bambusa multiplex cv. Fernleaf, Phyllostachys nigra, and Phyllostachys edulis. The dust retention capacity of Pleioblastus fortunei is the lowest, maintaining at 3.69 g/m2.

Key words

bamboo forests therapy / ornamental bamboo / dust retention capacity / leaf area / leaf surface microstructure

Cite this article

Download Citations
WANG Ruihan , ZHANG Qingping. Evaluation of dust retention effect of six common ornamental bamboo species in urban parks[J]. Journal of Nanjing Forestry University (Natural Sciences Edition). 2025, 49(6): 231-237 https://doi.org/10.12302/j.issn.1000-2006.202402023

References

[1]
孟凡, 刘东云. 韧性与健康理念下城市绿色开放空间发展研究[C]// 面向高质量发展的空间治理——2021中国城市规划年会论文集. 成都,2021:497-504.
MENG F, LIU D Y. Research on the development of urban green open spaces under the concepts of resilience and health[C]// Proceedings of the 2021 China Urban Planning Annual Conference, Chengdu, 2021:497-504. DOI: 10.26914/c.cnkihy.2021.024012.
[2]
郭诗宇, 汪远洋, 陈兴国, 等. 森林康养与康养森林建设研究进展[J]. 世界林业研究, 2022, 35(2):28-33.
GUO S Y, WANG Y Y, CHEN X G, et al. Research progress in forest therapy and forest established for healthcare[J]. World Forestry Research, 2022, 35(2):28-33.DOI: 10.13348/j.cnki.sjlyyj.2021.0103.y.
[3]
邓三龙. 森林康养的理论研究与实践[J]. 世界林业研究, 2016, 29(6):1-6.
DENG S L. Theoretic research and practices of forest health[J]. World Forestry Research, 2016, 29(6):1-6.DOI: 10.13348/j.cnki.sjlyyj.2016.06.001.
[4]
李智勇, JÁCOME P, LONG T T, 等. 拉丁美洲和加勒比地区主要竹种资源与利用[J]. 世界竹藤通讯, 2020, 18(3):7-12.
LI Z Y, JÁCOME P, LONG T T, et al. Main bamboo species and their utilization in Latin America and the Caribbean[J]. World Bamboo and Rattan, 2020, 18(3):7-12.DOI: 10.12168/sjzttx.2020.03.002.
[5]
洪茜, 倪乐, 吴佳木, 等. 紫竹等12种观赏竹春季滞尘效应研究[J]. 中国农学通报, 2014, 30(13):34-39.
HONG X, NI L, WU J M, et al. Study on spring dust retention capacity of 12 ornamental bamboos including Phyllostachys nigra[J]. Chinese Agricultural Science Bulletin, 2014, 30(13):34-39.
[6]
WANG Y C. Carbon sequestration and foliar dust retention by woody plants in the greenbelts along two major Taiwan highways[J]. Annals of Applied Biology, 2011, 159(2):244-251.DOI: 10.1111/j.1744-7348.2011.00494.x.
[7]
王松, 康红梅, 王晋, 等. 山西太原常绿植物滞尘能力差异性及叶面微结构[J]. 北方园艺, 2021(14):80-86.
WANG S, KANG H M, WANG J, et al. Dust catching property and leaf surface micro-structure of evergreen plants in Taiyuan,Shanxi[J]. Northern Horticulture, 2021(14):80-86.DOI: 10.11937/bfyy.20203837.
[8]
TOMSON M, KUMAR P, ABHIJITH K V, et al. Exploring the interplay between particulate matter capture,wash-off,and leaf traits in green wall species[J]. Science of The Total Environment, 2024,921:170950.DOI: 10.1016/j.scitotenv.2024.170950.
[9]
谢贤胜, 卢峰, 杨元征, 等. 广西桉树人工林叶面积指数的估测及其校正[J]. 生态学报, 2022, 42(11):4451-4462.
XIE X S, LU F, YANG Y Z, et al. Leaf area index estimation and correction of Eucalyptus plantation in Guangxi Autonomous Region[J]. Acta Ecologica Sinica, 2022, 42(11):4451-4462.DOI: 10.5846/stxb202106111562.
[10]
SHENG Q Q, ZHANG X Y, MENG C, et al. Dust retention effect of greenery in typical urban traffic landscapes of Nanjing:in the case of Xuanwu Avenue in Nanjing City[J]. Sustainability, 2024, 16(2):917.DOI: 10.3390/su16020917.
[11]
张少伟, 岳晨, 詹振枫, 等. 4种柳树叶片表面易去除与难去除颗粒物滞纳特征[J]. 林业科学, 2020, 56(6):26-34.
ZHANG S W, YUE C, ZHAN Z F, et al. Characteristics of easy and difficult removable particulate matter retained by the leaves of 4 willow species[J]. Scientia Silvae Sinicae, 2020, 56(6):26-34. DOI:10.11707/j.1001-7488.20200603.
[12]
李艳梅, 陈奇伯, 王邵军, 等. 昆明市主要绿化树种叶片滞尘能力的叶表微形态学解释[J]. 林业科学, 2018, 54(5):18-29.
LI Y M, CHEN Q B, WANG S J, et al. Effects of leaf surface micro-morphology structure on leaf dust-retaining ability of main greening tree species in Kunming City[J]. Scientia Silvae Sinicae, 2018, 54(5):18-29. DOI:10.11707/j.1001-7488.20180503.
[13]
殷亦佳, 陈启航, 赵芮, 等. 北京市常见绿化树种蒸腾特性与温湿效益研究[J]. 西北林学院学报, 2021, 36(1):31-36,76.
YIN Y J, CHEN Q H, ZHAO R, et al. Transpiration characteristics and temperature & humidity benefits of common greening tree species in Beijing[J]. Journal of Northwest Forestry University, 2021, 36(1):31-36,76. DOI:10.3969/j.issn.1001-7461.2021.01.05.
[14]
夏繁茂. 节约型园林植物的应用与优化研究[D]. 南京: 南京林业大学, 2012.
XIA F M. Research on the optimization and application of resource-efficient landscape plants[D]. Nanjing: Nanjing Forestry University, 2012.
[15]
谭一波, 赵仲辉. 叶面积指数的主要测定方法[J]. 林业调查规划, 2008, 33(3):45-48.
TAN Y B, ZHAO Z H. The main methods for determining leaf area index[J]. Forest Inventory and Planning, 2008, 33(3):45-48. DOI:10.3969/j.issn.1671-3168.2008.03.012.
[16]
刘延惠, 侯贻菊, 舒德远, 等. 贵阳市主要绿化树种叶面吸滞颗粒物特征及其时空变化[J]. 林业科学, 2020, 56(6):12-25.
LIU Y H, HOU Y J, SHU D Y, et al. Properties and spatio-temporal variation of leaf retained particulate matters of the main tree species planted in Guiyang City[J]. Scientia Silvae Sinicae, 2020, 56(6):12-25. DOI:10.11707/j.1001-7488.20200602.
[17]
刘晋熙. 六种常用垂直绿化植物滞尘能力研究[D]. 雅安: 四川农业大学, 2015.
LIU J X. Study on dust retention ability of six kinds of common vertical greening plants[D]. Yaan: Sichuan Agricultural University, 2015.
[18]
范宏坤, 曾涛, 金光泽, 等. 小兴安岭不同生长型阔叶植物叶性状变异及权衡[J]. 植物生态学报, 2024, 48(3):364-376.
Abstract
植物叶功能性状的变异模式以及相关关系一直是解析植物对气候变化响应机制的关键, 然而不同生长型阔叶植物间叶片结构性状和光合生理性状变异及相关性的异同性尚不清晰。该研究以典型阔叶红松(Pinus koraiensis)林中的优势或常见的18种阔叶植物为研究对象, 通过测量4个结构性状(叶面积(LA)、叶片厚度(LT)、叶干物质含量(LDMC)和比叶质量(LMA))和4个光合生理性状(叶绿素值(SPAD)、胞间CO<sub>2</sub>浓度(C<sub>i</sub>)、气孔导度(G<sub>s</sub>)和净光合速率(P<sub>n</sub>)), 分析了在不同生长型阔叶植物叶片结构性状和光合生理性状的变异及相关性。结果表明: 不同生长型植物叶功能性状的变异范围为7.73%-74.54%, 其中种间变异是LA和LT的主要变异来源, C<sub>i</sub>、SPAD、LDMC以及LMA的变异主要由生长型驱动, G<sub>s</sub>和P<sub>n</sub>变异的主要来源是种内; 不同生长型叶功能性状间存在显著差异, 其中草本的LA、LT和C<sub>i</sub>显著高于灌木和乔木, 乔木的LMA、LDMC、SPAD、P<sub>n</sub>和G<sub>s</sub>显著高于灌木和草本; 不同生长型之间P<sub>n</sub>和LMA、LDMC之间具有显著的异速生长关系, 且斜率大于1, 而SPAD和LA、LT、LDMC、LMA, C<sub>i</sub>与LT、LDMC、LMA之间则呈斜率小于1的异速生长关系; 草本采取“快速投资-收益”型(获取型)策略, 相对而言, 乔木采取“缓慢投资-收益”型(保守型)策略, 灌木采取介于乔木与草本之间的资源利用策略, 这可能与不同生长型植物所处环境的光照条件有关。植物叶片结构性状和光合生理特征的变异及相互关系的研究对于揭示植物资源获取与分配策略具有重要意义。
FAN H K, ZENG T, JIN G Z, et al. Leaf trait variation and trade-offs among growth types of broadleaf plants in Xiao Hinggan Mountains[J]. Chinese Journal of Plant Ecology, 2024, 48(3):364-376. DOI:10.17521/cjpe.2023.0137.
[19]
TAN X Y, LIU L, WU D Y. Relationship between leaf dust retention capacity and leaf microstructure of six common tree species for campus greening[J]. International Journal of Phytoremediation, 2022, 24(11):1213-1221. DOI:10.1080/15226514.2021.2024135.
[20]
王会霞, 石辉, 王彦辉. 典型天气下植物叶面滞尘动态变化[J]. 生态学报, 2015, 35(6):1696-1705.
WANG H X, SHI H, WANG Y H. Dynamics of the captured quantity of particulate matter by plant leaves under typical weather conditions[J]. Acta Ecologica Sinica, 2015, 35(6):1696-1705. DOI:10.5846/stxb201306051356.
[21]
王琴, 冯晶红, 黄奕, 等. 武汉市15种阔叶乔木滞尘能力与叶表微形态特征[J]. 生态学报, 2020, 40(1):213-222.
WANG Q, FENG J H, HUANG Y, et al. Dust-retention capability and leaf surface micromorphology of 15 broad-leaved tree species in Wuhan[J]. Acta Ecologica Sinica, 2020, 40(1):213-222. DOI:10.5846/stxb201808241808.
[22]
LI S L, HE C, ZHANG Y, et al. Effects of different external factors on urban roadside plants for the reduction of airborne fine particulate matters[J]. International Journal of Phytoremediation, 2023, 25(14):1901-1912. DOI:10.1080/15226514.2023.2207653.
[23]
吴晓成, 张秋良, 臧润国, 等. 额尔齐斯河天然杨树林叶面积指数及比叶面积的研究[J]. 西北林学院学报, 2009, 24(4):10-15.
WU X C, ZHANG Q L, ZANG R G, et al. Leaf area index and specific leaf area of natural poplars in ergis basin[J]. Journal of Northwest Forestry University, 2009, 24(4):10-15.
PDF(3717 KB)

Accesses

Citation

Detail

Sections
Recommended
The full text is translated into English by AI, aiming to facilitate reading and comprehension. The core content is subject to the explanation in Chinese.

/