Variation and trade-offs of twig and leaf traits among different broadleaved life form plants in the primitive broadleaved-Korean pine forest

HOU Xuanzhu, LI Nan

JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2025, Vol. 49 ›› Issue (3) : 163-171.

PDF(2763 KB)
PDF(2763 KB)
JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2025, Vol. 49 ›› Issue (3) : 163-171. DOI: 10.12302/j.issn.1000-2006.202403012

Variation and trade-offs of twig and leaf traits among different broadleaved life form plants in the primitive broadleaved-Korean pine forest

Author information +
History +

Abstract

【Objective】The trade-off between twig and leaf traits is crucial for understanding how plants allocate resources under various environmental stresses. This study focused on 12 dominant or common broadleaved plants in a natural broadleaved-Korean pine (Pinus koraiensis) forest. 【Method】We used one-way ANOVA or non-parametric rank-sum tests to analyze trait differences among different life forms or species. Standardized major axis estimation (SMA) was employed to investigate correlations between twig and leaf traits. 【Result】Broadleaved plants of different life forms exhibited similar trends in twig and leaf traits. Specifically, variation in twig cross-sectional area and volume-based leafing intensity were greater than 30%, twig mass variation exceeded 20%, while individual leaf mass, total leaf area, and individual leaf area variations were below 15%. Trees had significantly higher individual leaf area, total leaf area, and individual leaf mass compared to shrubs. There was a positive allometric relationship between twig cross-sectional area and individual leaf area in trees, while shrubs showed a positive isometric relationship. Both trees and shrubs exhibited positive isometric relationships between twig cross-sectional area and total leaf area, with only some species showing positive allometric relationships. Both tree and shrub species demonstrated negative allometric relationships between volume-based leafing intensity and individual leaf area or mass, with some tree species showing negative isometric relationships. 【Conclusion】The results suggest that twig and leaf traits across different plant life forms generally follow allometric relationships. Allometric growth enhances plant survival strategies, and the trade-off model of twig and leaf traits is influenced by growth patterns.

Key words

broad leaved-Korean pine forest / trade-off relationship / life form / trait variation / volume-based leafing intensity / functional traits

Cite this article

Download Citations
HOU Xuanzhu , LI Nan. Variation and trade-offs of twig and leaf traits among different broadleaved life form plants in the primitive broadleaved-Korean pine forest[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2025, 49(3): 163-171 https://doi.org/10.12302/j.issn.1000-2006.202403012

References

[1]
KATTGE J, DÍAZ S, LAVOREL S, et al. TRY: a global database of plant traits[J]. Global Change Biology, 2011, 17(9):2905-2935.DOI: 10.1111/j.1365-2486.2011.02451.x.
[2]
VIOLLE C, ENQUIST B J, MCGILL B J, et al. The return of the variance:intraspecific variability in community ecology[J]. Trends in Ecology & Evolution, 2012, 27(4):244-252.DOI: 10.1016/j.tree.2011.11.014.
[3]
WRIGHT I J, REICH P B, WESTOBY M, et al. The worldwide leaf economics spectrum[J]. Nature, 2004, 428(6985):821-827.DOI: 10.1038/nature02403.
[4]
YANG J, SONG X Y, CAO M, et al. On the modelling of tropical tree growth:the importance of intra-specific trait variation,non-linear functions and phenotypic integration[J]. Annals of Botany, 2021, 127(4):533-542.DOI: 10.1093/aob/mcaa085.
[5]
LEVIONNOIS S, COSTE S, NICOLINI E, et al. Scaling of petiole anatomies,mechanics and vasculatures with leaf size in the widespread Neotropical pioneer tree species Cecropia obtusa Trécul (Urticaceae)[J]. Tree Physiology, 2020, 40(2):245-258.DOI: 10.1093/treephys/tpz136.
[6]
ELLNER S P, SNYDER R E, ADLER P B, et al. An expanded modern coexistence theory for empirical applications[J]. Ecology Letters, 2019, 22(1):3-18.DOI: 10.1111/ele.13159.
[7]
WESTOBY M, FALSTER D S, MOLES A T, et al. Plant ecological strategies:some leading dimensions of variation between species[J]. Annual Review of Ecology and Systematics, 2002, 33:125-159.DOI: 10.1146/annurev.ecolsys.33.010802.150452.
[8]
CORNWELL W K, ACKERLY D D. Community assembly and shifts in plant trait distributions across an environmental gradient in coastal California[J]. Ecological Monographs, 2009, 79(1):109-126.DOI: 10.1890/07-1134.1.
[9]
MIGLIAVACCA M, MUSAVI T, MAHECHA M D, et al. The three major axes of terrestrial ecosystem function[J]. Nature, 2021, 598(7881):468-472.DOI: 10.1038/s41586-021-03939-9.
[10]
TAYLOR A, WEIGELT P, DENELLE P, et al. The contribution of plant life and growth forms to global gradients of vascular plant diversity[J]. New Phytologist, 2023, 240(4):1548-1560.DOI: 10.1111/nph.19011.
[11]
MOUILLOT D, GRAHAM N A J, VILLÉGER S, et al. A functional approach reveals community responses to disturbances[J]. Trends in Ecology & Evolution, 2013, 28(3):167-177.DOI: 10.1016/j.tree.2012.10.004.
[12]
YAN E R, WANG X H, CHANG S X, et al. Scaling relationships among twig size,leaf size and leafing intensity in a successional series of subtropical forests[J]. Tree Physiology, 2013, 33(6):609-617.DOI: 10.1093/treephys/tpt042.
[13]
杨冬梅, 占峰, 张宏伟. 清凉峰不同海拔木本植物小枝内叶大小-数量权衡关系[J]. 植物生态学报, 2012, 36(4):281-291.
YANG D M, ZHAN F, ZHANG H W. Trade-off between leaf size and number in current-year twigs of deciduous broad-leaved woody species at different altitudes on Qingliang Mountain, southeastern China[J]. Chinese Journal of Plant Ecology, 2012, 36(4):281-291.DOI: 10.3724/SP.J.1258.2012.00281.
[14]
CORNER E J H. The durian theory or the origin of the modern tree[J]. Annals of Botany, 1949, 13(4):367-414.DOI: 10.1093/oxfordjournals.aob.a083225.
[15]
SUN S C, JIN D M, SHI P L. The leaf size-twig size spectrum of temperate woody species along an altitudinal gradient:an invariant allometric scaling relationship[J]. Annals of Botany, 2006, 97(1):97-107.DOI: 10.1093/aob/mcj004.
[16]
MENG F Q, ZHANG G F, LI X C, et al. Growth synchrony between leaves and stems during twig development differs among plant functional types of subtropical rainforest woody species[J]. Tree Physiology, 2015, 35(6):621-631.DOI: 10.1093/treephys/tpv021.
[17]
PRESTON K A, ACKERLY D D. Hydraulic architecture and the evolution of shoot allometry in contrasting climates[J]. American Journal of Botany, 2003, 90(10):1502-1512.DOI: 10.3732/ajb.90.10.1502.
[18]
BROUAT C, GIBERNAU M, AMSELLEM L, et al. Corner’s rules revisited:ontogenetic and interspecific patterns in leaf-stem allometry[J]. New Phytologist, 1998, 139(3):459-470.DOI: 10.1046/j.1469-8137.1998.00209.x.
[19]
BAIRD A S, TAYLOR S H, PASQUET-KOK J, et al. Developmental and biophysical determinants of grass leaf size worldwide[J]. Nature, 2021, 592(7853):242-247.DOI: 10.1038/s41586-021-03370-0.
[20]
YANG Y Z, WANG H, HARRISON S P, et al. Quantifying leaf-trait covariation and its controls across climates and biomes[J]. New Phytologist, 2019, 221(1):155-168.DOI: 10.1111/nph.15422.
[21]
KLEIMAN D, AARSSEN L W. The leaf size/number trade-off in trees[J]. Journal of Ecology, 2007, 95(2):376-382.DOI: 10.1111/j.1365-2745.2006.01205.x.
[22]
WESTOBY M, WRIGHT I J. The leaf size-twig size spectrum and its relationship to other important spectra of variation among species[J]. Oecologia, 2003, 135(4):621-628.DOI: 10.1007/s00442-003-1231-6.
[23]
徐丽娜, 金光泽. 小兴安岭凉水典型阔叶红松林动态监测样地:物种组成与群落结构[J]. 生物多样性, 2012, 20(4):470-481.
XU L N, JIN G Z. Species composition and community structure of a typical mixed broadleaved-Korean pine (Pinus koraiensis) forest plot in Liangshui Nature Reserve,northeast China[J]. Biodiversity Science, 2012, 20(4):470-481.DOI: 10.3724/SP.J.1003.2012.12233.
[24]
WARTON D I, DUURSMA R A, FALSTER D S, et al. Smatr 3: an R package for estimation and inference about allometric lines[J]. Methods in Ecology and Evolution, 2012, 3(2):257-259.DOI: 10.1111/j.2041-210x.2011.00153.x.
[25]
R CORE TEAM. R: a language and environment for statistical computing[Z]. R Foundation for Statistical Computing, Vienna, Austria, 2021. http://www.R-project.org/.
[26]
NIINEMETS Ü, KEENAN T F, HALLIK L. A worldwide analysis of within-canopy variations in leaf structural,chemical and physiological traits across plant functional types[J]. New Phytologist, 2015, 205(3):973-993.DOI: 10.1111/nph.13096.
[27]
DONG N, PRENTICE I C, WRIGHT I J, et al. Components of leaf-trait variation along environmental gradients[J]. New Phytologist, 2020, 228(1):82-94.DOI: 10.1111/nph.16558.
[28]
ANDEREGG L D L, LOY X, MARKHAM I P, et al. Aridity drives coordinated trait shifts but not decreased trait variance across the geographic range of eight Australian trees[J]. New Phytologist, 2021, 229(3):1375-1387.DOI: 10.1111/nph.16795.
[29]
SCHÖB C, ARMAS C, GULER M, et al. Variability in functional traits mediates plant interactions along stress gradients[J]. Journal of Ecology, 2013, 101(3):753-762.DOI: 10.1111/1365-2745.12062.
[30]
WESTOBY M, WRIGHT I J. Land-plant ecology on the basis of functional traits[J]. Trends in Ecology & Evolution, 2006, 21(5):261-268.DOI: 10.1016/j.tree.2006.02.004.
[31]
VLEMINCKX J, FORTUNEL C, VALVERDE-BARRANTES O, et al. Resolving whole-plant economics from leaf,stem and root traits of 1467 Amazonian tree species[J]. Oikos, 2021, 130(7):1193-1208.DOI: 10.1111/oik.08284.
[32]
王进, 朱江, 艾训儒, 等. 湖北星斗山地形变化对不同生活型植物叶功能性状的影响[J]. 植物生态学报, 2019, 43(5):447-457.
WANG J, ZHU J, AI X R, et al. Effects of topography on leaf functional traits across plant life forms in Xingdou Mountain, Hubei,China[J]. Chinese Journal of Plant Ecology, 2019, 43(5):447-457.DOI: 10.17521/cjpe.2018.0228.
[33]
WESTERBAND A C, FUNK J L, BARTON K E. Intraspecific trait variation in plants:a renewed focus on its role in ecological processes[J]. Annals of Botany, 2021, 127(4):397-410.DOI: 10.1093/aob/mcab011.
[34]
HE D, BISWAS S R, XU M-S, et al. The importance of intraspecific trait variability in promoting functional niche dimensionality[J]. Ecography, 2021, 44(3):380-390.DOI: 10.1111/ecog.05254.
[35]
GIVNISH T J, VERMEIJ G J. Sizes and shapes of Liane leaves[J]. The American Naturalist, 1976, 110(975):743-778.DOI: 10.1086/283101.
[36]
FAN Z X, STERCK F, ZHANG S B, et al. Tradeoff between stem hydraulic efficiency and mechanical strength affects leaf-stem allometry in 28 Ficus tree species[J]. Frontiers in Plant Science, 2017,8:1619.DOI: 10.3389/fpls.2017.01619.
[37]
FAJARDO A, MORA J P, ROBERT E. Corner’s rules pass the test of time:little effect of phenology on leaf-shoot and other scaling relationships[J]. Annals of Botany, 2020, 126(7):1129-1139.DOI: 10.1093/aob/mcaa124.
[38]
李曼, 郑媛, 郭英荣, 等. 武夷山不同海拔黄山松枝叶大小关系[J]. 应用生态学报, 2017, 28(2):537-544.
LI M, ZHENG Y, GUO Y R, et al. Scaling relationships between twig size and leaf size of Pinus hwangshanensis along an altitudinal gradient in Wuyi Mountains,China[J]. Chinese Journal of Applied Ecology, 2017, 28(2):537-544.DOI: 10.13287/j.1001-9332.201702.039.
[39]
SLOT M, REY-SÁNCHEZ C, GERBER S, et al. Thermal acclimation of leaf respiration of tropical trees and lianas:response to experimental canopy warming,and consequences for tropical forest carbon balance[J]. Global Change Biology, 2014, 20(9):2915-2926.DOI: 10.1111/gcb.12563.
[40]
WRIGHT I J, DONG N, MAIRE V, et al. Global climatic drivers of leaf size[J]. Science, 2017, 357(6354):917-921.DOI: 10.1126/science.aal4760.
[41]
LIU R, YANG X J, GAO R R, et al. Allometry rather than abiotic drivers explains biomass allocation among leaves,stems and roots of Artemisia across a large environmental gradient in China[J]. Journal of Ecology, 2021, 109(2):1026-1040.DOI: 10.1111/1365-2745.13532.
[42]
YANG D M, LI G Y, SUN S C. The generality of leaf size versus number trade-off in temperate woody species[J]. Annals of Botany, 2008, 102(4):623-629.DOI: 10.1093/aob/mcn135.
[43]
OSADA N, NABESHIMA E, HIURA T. Geographic variation in shoot traits and branching intensity in relation to leaf size in Fagus crenata:a common garden experiment[J]. American Journal of Botany, 2015, 102(6):878-887.DOI: 10.3732/ajb.1400559.
[44]
CUI E Q, WENG E S, YAN E R, et al. Robust leaf trait relationships across species under global environmental changes[J]. Nature Communications, 2020, 11(1):2999.DOI: 10.1038/s41467-020-16839-9.
[45]
李锦隆, 王满堂, 李涵诗, 等. 冠层高度对江西69种阔叶树小枝单叶生物量与出叶强度关系的影响[J]. 林业科学, 2021, 57(2):62-71.
LI J L, WANG M T, LI H S, et al. Effects of canopy height on the relationship between individual leaf mass and leafing intensity of 69 broad leaved trees in Jiangxi province[J]. Scientia Silvae Sinicae, 2021, 57(2):62-71. DOI:10.11707/j.1001-7488.20210207.
[46]
ZHANG L, COPINI P, WEEMSTRA M, et al. Functional ratios among leaf,xylem and phloem areas in branches change with shade tolerance,but not with local light conditions,across temperate tree species[J]. New Phytologist, 2016, 209(4):1566-1575.DOI: 10.1111/nph.13731.
[47]
OSADA N, HIURA T. How is light interception efficiency related to shoot structure in tall canopy species?[J]. Oecologia, 2017, 185(1):29-41.DOI: 10.1007/s00442-017-3926-0.
[48]
MENG F Q, CAO R, YANG D M, et al. Trade-offs between light interception and leaf water shedding:a comparison of shade-and sunvadapted species in a subtropical rainforest[J]. Oecologia, 2014, 174(1):13-22.DOI: 10.1007/s00442-013-2746-0.

黑龙江凉水国家级自然保护区管理局顾伟博士在样品采集过程中给予的大力支持。

PDF(2763 KB)

Accesses

Citation

Detail

Sections
Recommended
The full text is translated into English by AI, aiming to facilitate reading and comprehension. The core content is subject to the explanation in Chinese.

/