The identification and functional analysis of BZR1 genes in yellowhorn

XU Huihui, BAN Zhuo, WANG Chenxue, BI Quanxin, LIU Xiaojuan, WANG Libing

JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2025, Vol. 49 ›› Issue (2) : 12-22.

PDF(6192 KB)
PDF(6192 KB)
JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2025, Vol. 49 ›› Issue (2) : 12-22. DOI: 10.12302/j.issn.1000-2006.202403036

The identification and functional analysis of BZR1 genes in yellowhorn

Author information +
History +

Abstract

【Objective】This study aimed to systematically characterize the BZR1 transcription factor family in yellowhorn (Xanthoceras sorbifolium) and elucidate its functional roles in abiotic stress response, thereby providing insights for breeding stress-resistant cultivars.【Method】Genome-wide identification of XsBZR1 genes was performed using bioinformatics tools. Subcellular localization of XsBZR1 proteins was validated via 35S::XsBZR1-eYFP fusion constructs. Expression profiles under abiotic stresses (low temperature, salt, drought) and abscisic acid (ABA) treatment were analyzed by qRT-PCR. Functional validation was conducted by overexpressing XsBZR1- 9 in Arabidopsis thaliana and assessing salt tolerance phenotypes.【Result】Nine XsBZR1 genes (XsBZR1-1 to XsBZR1-9) were identified and distributed unevenly across six chromosomes. Phylogenetic and synteny analyses revealed close evolutionary relationships with dicotyledonous BZR1 orthologs. Promoter regions harbored abundant cis-regulatory elements associated with light responsiveness (48.9%), hormone signaling (35.0%) and stress adaptation (24.6%). The nuclear localization of all XsBZR1 proteins was experimentally confirmed. Differential expression patterns were observed under stress conditions: low temperature (4 ℃) rapidly induced eight XsBZR1 genes (1.3- to 6.0-fold upregulation at 3 h; P<0.05), except XsBZR1-7. Salt stress (150 mmol/L NaCl) suppressed XsBZR1-3/4/5/7 but strongly upregulated XsBZR1-1 (26.1-fold) and XsBZR1-9 (19.6-fold) at 9 h (P<0.001). Drought stress (mass fraction 25% PEG6000) elevated XsBZR1- 3/7/8/9 expression (>1.9-fold at 9 h), while others remained stable. ABA treatment (100 μmol/L) universally induced XsBZR1 genes, with XsBZR1-8 showing a 35.4-fold increase (P<0.001).Transgenic Arabidopsis overexpressing XsBZR1-9 exhibited enhanced salt tolerance, with taproot lengths twice that of the wild-type under 100 mmol/L NaCl (P<0.01).【Conclusion】The XsBZR1 gene family plays pivotal roles in yellowhorn’s abiotic stress response, with XsBZR1-9 demonstrating significant potential for improving salt tolerance. These findings advance the molecular understanding of stress adaptation mechanisms in woody plants and provide targets for precision breeding.

Key words

yellowhorn(Xanthoceras sorbifolium) / BZR1 transcription factor / abiotic stress tolerance / gene overexpression / salt stress response / XsBZR1- 9

Cite this article

Download Citations
XU Huihui , BAN Zhuo , WANG Chenxue , et al . The identification and functional analysis of BZR1 genes in yellowhorn[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2025, 49(2): 12-22 https://doi.org/10.12302/j.issn.1000-2006.202403036

References

[1]
YANG Y Z, CHU C C, QIAN Q, et al. Leveraging brassinosteroids towards the next green revolution[J]. Trends Plant Sci, 2024, 29(1):86-98.DOI:10.1016/j.tplants.2023.09.005.
[2]
王孟珂, 杨晓明, 汪贵斌, 等. 外施24-表油菜素内酯(EBR)对银杏叶片发育和生理特征影响[J]. 南京林业大学学报(自然科学版), 2023, 47(4):81-87.
WANG M K, YANG X M, WANG G B, et al. Effects of external 24-epibrassinolide (EBR) application on the development and physiological characteristics of Ginkgo biloba leaves[J]. J Nanjing For Univ (Nat Sci Ed), 2023, 47(4):81-87.DOI:10.12302/j.issn.1000-2006.202109026.
[3]
NOLAN T M, VUKAŠINOVIĆ N, LIU D R, et al. Brassinosteroids:multidimensional regulators of plant growth,development,and stress responses[J]. Plant Cell, 2020, 32(2):295-318.DOI:10.1105/tpc.19.00335..
[4]
SHE J, HAN Z F, KIM T W, et al. Structural insight into brassinosteroid perception by BRI1[J]. Nature, 2011, 474(7352):472-476.DOI:10.1038/nature10178.
[5]
NAM K H, LI J M. BRI1/BAK1,a receptor kinase pair mediating brassinosteroid signaling[J]. Cell, 2002, 110(2):203-212.DOI:10.1016/s0092-8674(02)00814-0.
[6]
WANG Z Y, NAKANO T, GENDRON J, et al. Nuclear-localized BZR1 mediates brassinosteroid-induced growth and feedback suppression of brassinosteroid biosynthesis[J]. Dev Cell, 2002, 2(4):505-513.DOI:10.1016/s1534-5807(02)00153-3.
[7]
NOSAKI S, MIYAKAWA T, XU Y Q, et al. Structural basis for brassinosteroid response by BIL1/BZR1[J]. Nat Plants, 2018, 4(10):771-776.DOI:10.1038/s41477-018-0255-1.
[8]
SUN Y, FAN X Y, CAO D M, et al. Integration of brassinosteroid signal transduction with the transcription network for plant growth regulation in Arabidopsis[J]. Dev Cell, 2010, 19(5):765-777.DOI:10.1016/j.devcel.2010.10.010.
[9]
YU X F, LI L, ZOLA J, et al. A brassinosteroid transcriptional network revealed by genome-wide identification of BESI target genes in Arabidopsis thaliana[J]. Plant J, 2011, 65(4):634-646.DOI:10.1111/j.1365-313X.2010.04449.x.
[10]
REINHOLD H, SOYK S, SIMKOVÁ K, et al. β-amylase-like proteins function as transcription factors in Arabidopsis,controlling shoot growth and development[J]. Plant Cell, 2011, 23(4):1391-1403.DOI:10.1105/tpc.110.081950.
[11]
YIN Y H, VAFEADOS D, TAO Y, et al. A new class of transcription factors mediates brassinosteroid: regulated gene expression in Arabidopsis[J]. Cell, 2005, 120(2):249-259.DOI:10.1016/j.cell.2004.11.044.
[12]
THALMANN M, COIRO M, MEIER T, et al. The evolution of functional complexity within the β-amylase gene family in land plants[J]. BMC Evol Biol, 2019, 19(1):66.DOI:10.1186/s12862-019-1395-2.
[13]
沈春洋. 番茄BZR基因家族生物信息学分析及抗逆基因功能鉴定[D]. 哈尔滨: 东北农业大学, 2022.
SHEN C Y. Bioinformatics analysis of tomato BZR gene family and functional identification of stress-resistant genes[D].Harbin: Northeast Agricultural University, 2022.DOI: 10.27010/d.cnki.gdbnu.2022.000291.
[14]
CAO X, KHALIQ A, LU S, et al. Genome-wide identification and characterization of the BES1 gene family in apple (Malus domestica)[J]. Plant Biol, 2020, 22(4):723-733.DOI:10.1111/plb.13109.
[15]
CUI X Y, GAO Y, GUO J, et al. BES/BZR transcription factor TaBZR2 positively regulates drought responses by activation of TaGST1[J]. Plant Physiol, 2019, 180(1):605-620.DOI:10.1104/pp.19.00100.
[16]
JIA C G, ZHAO S K, BAO T T, et al. Tomato BZR/BES transcription factor SlBZR1 positively regulates BR signaling and salt stress tolerance in tomato and Arabidopsis[J]. Plant Sci, 2021,302:110719.DOI:10.1016/j.plantsci.2020.110719.
[17]
SUN Z T, LIU X Z, ZHU W D, et al. Molecular traits and functional exploration of BES1 gene family in plants[J]. Int J Mol Sci, 2022, 23(8):4242.DOI:10.3390/ijms23084242.
[18]
ZHAO Y, LIU X J, WANG M K, et al. Transcriptome and physiological analyses provide insights into the leaf epicuticular wax accumulation mechanism in yellowhorn[J]. Hortic Res, 2021, 8(1):134.DOI:10.1038/s41438-021-00564-5.
[19]
YU H Y, FAN S Q, BI Q X, et al. Seed morphology,oil content and fatty acid composition variability assessment in yellow horn (Xanthoceras sorbifolium Bunge) germplasm for optimum biodiesel production[J]. Ind Crops Prod, 2017, 97:425-430.DOI:10.1016/j.indcrop.2016.12.054.
[20]
麻云霞. 文冠果种子特性变异及优良砧用种源选择[D]. 呼和浩特: 内蒙古农业大学, 2021.
MA Y X. Variation of seed characteristics and selection of superior rootstock provenance of Xanthoceras sorbifolia Bunge[D]. Hohhot: Inner Mongolia Agricultural University, 2021.DOI: 10.27229/d.cnki.gnmnu.2021.000047.
[21]
刘志. 文冠果WRKY转录因子家族的鉴定及非生物胁迫响应模式分析[D]. 哈尔滨: 东北林业大学, 2020.
LIU Z. Identification of WRKY transcription factor family in Xanthoceras sorbifolia Bunge and analysis of abiotic stress response pattern[D].Harbin: Northeast Forestry University, 2020.DOI: 10.27009/d.cnki.gdblu.2020.000390.
[22]
常巧颖. 文冠果bZIP转录因子家族鉴定和非生物胁迫应答模式分析[D]. 哈尔滨: 东北林业大学, 2020.
CHANG Q Y. Identification of bZIP transcription factor family in Xanthoceras sorbifolia Bunge and analysis of abiotic stress response pattern[D].Harbin: Northeast Forestry University, 2020.DOI: 10.27009/d.cnki.gdblu.2020.000536.
[23]
杨娟, 姜阳明, 周芳, 等. PEG模拟干旱胁迫对不同抗旱性玉米品种苗期形态与生理特性的影响[J]. 作物杂志, 2021(1):82-89.
YANG J, JIANG Y M, ZHOU F, et al. Effects of PEG simulated drought stress on seedling morphology and physiological characteristics of different drought-resistance maize varieties[J]. Crops, 2021(1):82-89.DOI:10.16035/j.issn.1001-7283.2021.01.012.
[24]
BI Q X, WANG M K, LI J, et al. The phased chromosome-scale genome of yellowhorn sheds light on the mechanism of petal color change[J]. Hortic Plant J, 2023, 9(6):1193-1206.DOI:10.1016/j.hpj.2023.05.010.
[25]
LANG Y H, LIU Z. Basic Helix-Loop-Helix (bHLH) transcription factor family in Yellow horn (Xanthoceras sorbifolia Bunge):genome-wide characterization,chromosome location,phylogeny,structures and expression patterns[J]. Int J Biol Macromol, 2020, 160:711-723.DOI:10.1016/j.ijbiomac.2020.05.253.
[26]
周晔, 赵璇, 王璐, 等. 植物BZR家族基因调控非生物胁迫应答和生长发育的研究进展[J]. 中国油料作物学报, 2020, 42(4):499-511.
ZHOU Y, ZHAO X, WANG L, et al. Research advances on plant BZR family genes in regulating abiotic stress response and development[J]. Chin J Oil Crop Sci, 2020, 42(4):499-511.DOI:10.19802/j.issn.1007-9084.2020163.
[27]
王黎明, 杨瑞珍, 孙加强. 油菜素内酯调控作物农艺性状和非生物胁迫响应的研究进展[J]. 生物工程学报, 2022, 38(1):34-49.
WANG L M, YANG R Z, SUN J Q. Regulation of crop agronomic traits and abiotic stress responses by brassinosteroids:a review[J]. Chin J Biotechnol, 2022, 38(1):34-49.DOI:10.13345/j.cjb.210236.
[28]
YANG J, WU Y, LI L, et al. Comprehensive analysis of the BES1 gene family and its expression under abiotic stress and hormone treatment in Populus trichocarpa[J]. Plant Physiol Biochem, 2022, 173:1-13.DOI:10.1016/j.plaphy.2022.01.019.
[29]
尹魁林, 程莎莎, 艾长丰, 等. 枣BZR基因家族的鉴定及其在果实发育中的表达分析[J/OL]. 分子植物育种:1-13[2024-03-26].
YIN K L, CHENG S S, AI C F, et al. Genome-wide identification of ZjBZR gene family and expression analysis in jujube fruit[J/OL]. Molecular Plants Breeding:1-13. [2024-03-26].
[30]
FENG W Q, ZHANG H, CAO Y, et al. Maize ZmBES1/BZR1-1 transcription factor negatively regulates drought tolerance[J]. Plant Physiol Biochem, 2023,205:108188.DOI:10.1016/j.plaphy.2023.108188.
[31]
明川. 玉米BES1/BZR1转录因子基因鉴定[D]. 雅安: 四川农业大学, 2019.
MING C. Identification of transcription factor gene BES1/BZR1 in maize[D]. Ya’an: Sichuan Agricultural University, 2019.DOI: 10.27345/d.cnki.gsnyu.2019.000495.
[32]
SAHA G, PARK J I, JUNG H J, et al. Molecular characterization of BZR transcription factor family and abiotic stress induced expression profiling in Brassica rapa[J]. Plant Physiol Biochem, 2015, 92:92-104.DOI:10.1016/j.plaphy.2015.04.013.
[33]
杜巧丽, 刘均霞, 陈美晴, 等. 高粱BR信号转录因子BZR1基因家族的鉴定及激素应答分析[J]. 植物保护学报, 2022, 49(3):848-856.
DU Q L, LIU J X, CHEN M Q, et al. Identification of Sorghum BR signal transcription factor BZR1 gene family and analysis of hormone response[J]. J Plant Prot, 2022, 49(3):848-856.DOI:10.13802/j.cnki.zwbhxb.2022.2020206.
[34]
WANG D Z, ZUO J H, LIU S, et al. BRI1 EMS SUPPRESSOR1 genes regulate abiotic stress and anther development in wheat (Triticum aestivum L.)[J]. Front Plant Sci, 2023,14:1219856.DOI:10.3389/fpls.2023.1219856.
[35]
陈旭, 沈春洋, 莫福磊, 等. 番茄BZR基因家族鉴定及非生物胁迫下表达模式分析[J]. 东北农业大学学报, 2021, 52(11):9-17.
CHEN X, SHEN C Y, MO F L, et al. Identification of BZR gene family in tomato and expression patterns analysis under abiotic stress[J]. J Northeast Agric Univ, 2021, 52(11):9-17.DOI:10.19720/j.cnki.issn.1005-9369.2021.11.002.
[36]
AN S M, LIU Y, SANG K Q, et al. Brassinosteroid signaling positively regulates abscisic acid biosynthesis in response to chilling stress in tomato[J]. J Integr Plant Biol, 2023, 65(1):10-24.DOI:10.1111/jipb.13356.
[37]
ZUO C L, ZHANG L, YAN X Y, et al. Evolutionary analysis and functional characterization of BZR1 gene family in celery revealed their conserved roles in brassinosteroid signaling[J]. BMC Genomics, 2022, 23(1):568.DOI:10.1186/s12864-022-08810-3.
[38]
LUO S L, ZHANG G B, ZHANG Z Y, et al. Genome-wide identification and expression analysis of BZR gene family and associated responses to abiotic stresses in cucumber (Cucumis sativus L.)[J]. BMC Plant Biol, 2023, 23(1):214.DOI:10.1186/s12870-023-04216-9.
[39]
LI Y Y, HE L L, LI J, et al. Genome-wide identification,characterization,and expression profiling of the legume BZR transcription factor gene family[J]. Front Plant Sci, 2018,9:1332.DOI:10.3389/fpls.2018.01332.
[40]
CHEN X W, WU X Y, QIU S Y, et al. Genome-wide identification and expression profiling of the BZR transcription factor gene family in Nicotiana benthamiana[J]. Int J Mol Sci, 2021, 22(19):10379.DOI:10.3390/ijms221910379.
[41]
LI H, YE K Y, SHI Y T, et al. BZR1 positively regulates freezing tolerance via CBF-dependent and CBF-independent pathways in Arabidopsis[J]. Mol Plant, 2017, 10(4):545-559.DOI:10.1016/j.molp.2017.01.004.
[42]
LIU J L, YANG R C, JIAN N, et al. Putrescine metabolism modulates the biphasic effects of brassinosteroids on canola and Arabidopsis salt tolerance[J]. Plant Cell Environ, 2020, 43(6):1348-1359.DOI:10.1111/pce.13757.
[43]
WANG X X, CHEN X D, WANG Q J, et al. MdBZR1 and MdBZR1-2 like transcription factors improves salt tolerance by regulating gibberellin biosynthesis in apple[J]. Front Plant Sci, 2019,10:1473.DOI:10.3389/fpls.2019.01473.
[44]
FUJITA M, FUJITA Y, MARUYAMA K, et al. A dehydration-induced NAC protein,RD26,is involved in a novel ABA-dependent stress-signaling pathway[J]. Plant J, 2004, 39(6):863-876.DOI:10.1111/j.1365-313X.2004.02171.x.
[45]
YE H X, LIU S Z, TANG B Y, et al. RD26 mediates crosstalk between drought and brassinosteroid signalling pathways[J]. Nat Commun, 2017,8:14573.DOI:10.1038/ncomms14573.
PDF(6192 KB)

Accesses

Citation

Detail

Sections
Recommended
The full text is translated into English by AI, aiming to facilitate reading and comprehension. The core content is subject to the explanation in Chinese.

/