JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2025, Vol. 49 ›› Issue (2): 12-22.doi: 10.12302/j.issn.1000-2006.202403036
Special Issue: 推进乡村全面振兴视域下的多功能油用树种文冠果研究
Previous Articles Next Articles
XU Huihui(), BAN Zhuo, WANG Chenxue, BI Quanxin, LIU Xiaojuan*(
), WANG Libing
Received:
2024-03-27
Accepted:
2024-06-25
Online:
2025-03-30
Published:
2025-03-28
Contact:
LIU Xiaojuan
E-mail:xuhuihui0206@163.com;liuxiaojuan@caf.ac.cn
CLC Number:
XU Huihui, BAN Zhuo, WANG Chenxue, BI Quanxin, LIU Xiaojuan, WANG Libing. The identification and functional analysis of BZR1 genes in yellowhorn[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2025, 49(2): 12-22.
Table 1
A list of primer sequences"
基因名称 gene name | 正向引物序列(5'—) forward primer sequence | 反向引物序列(3'—) reverse primer sequence | 用途 application |
---|---|---|---|
XsBZR1- 1 | CTCGGTGGCAATGAAGTT | GCAGAGAAGTTGGTTGTTG | qRT-PCR引物 |
XsBZR1- 2 | AGAAGAGAAGGAGAGGACAA | ACGATGAAGTTACCATAGCA | |
XsBZR1- 3 | ATGCGATGAGTCTGATACAT | TCCATTCCTTCCATTCCTAC | |
XsBZR1- 4 | TGTGGAGCGAATGGATATAG | AACTGGAGCACTGATGGA | |
XsBZR1- 5 | AGAAGACGGCACCACTTA | AGGACTCGGATTGTAAGATG | |
XsBZR1- 6 | CTGGTGGTGGAGGAGATT | CCGCCGTATAAGTAGAGTG | |
XsBZR1- 7 | GAGGCTGGTTGGATTGTT | CGCACTGATGTTCGTAGA | |
XsBZR1- 8 | AATGTGGTGGATGAGAAGAA | CTTGAAGCCTGGCGAATA | |
XsBZR1- 9 | CCTGTAGAGCGAATGGATAT | AACTGGAGCACTGATGGA | |
XsActin | AGAGATTCCGTTGCCCAGAA | CCACCACTGAGCACAATGTT | |
AtActin | TTACCCGATGGGCAAGTC | GCTCATACGGTCAGCGATAC | |
XsBZR1- 1 | ATGATTACAATCAGCAACAT | AGCCAGCAGATCGCCCACTA | XsBZR1 基因克隆引物 |
XsBZR1- 2 | ATGGCAACAGATATGCAGAA | CACCTGGAGATCAAGAACTG | |
XsBZR1- 3 | ATGACGTCTGATGGGGCGAC | ACCCTGAGTCTTCCCAGTTC | |
XsBZR1- 4 | ATGACGTCAGGATCGAGACT | GCCAGAAAGCCGCTGCCTAC | |
XsBZR1- 5 | ATGACGTCGGGTACGAGAAT | TCTGGTTTTAGAGTTTCCCA | |
XsBZR1- 6 | ATGTTTCCAATCAGAAAATT | TATTGTACGGCGTGGAGGAG | |
XsBZR1- 7 | ATGACAGCGGGAGGATCAGG | TCCGCGCGTCTTGGTACTAC | |
XsBZR1- 8 | ATGGGGAAAGAGAATGTGGT | GTCTTCATCTCCTGATTGAT | |
XsBZR1- 9 | ATGACGTCAGGATCGAGGTT | CCTGGTCCTTGAGCTCCCAA |
Table 2
XsBZR1 gene family and encoding protein properities"
基因名称 gene name | 基因ID gene ID | 蛋白序列 长度/aa length | 分子质量 /ku molecular weight | 等电点 pI | 总平均 疏水指数 GRAVY | 保守结构域 domain | 亚细胞号 subcellular localization | 染色体号 chromosome No. | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
XsBZR1-1 | Xsorbifolium001562.1 | 653 | 73.73 | 5.62 | -0.403 | BES1_N Glyco_hydro_14 | 细胞核 | 1 | ||||||||
XsBZR1-2 | Xsorbifolium002147.2 | 702 | 78.46 | 5.40 | -0.364 | BES1_N Glyco_hydro_14 | 细胞核 | 1 | ||||||||
XsBZR1-3 | Xsorbifolium010436.1 | 316 | 34.45 | 8.39 | -0.601 | BES1_N | 细胞核 | 6 | ||||||||
XsBZR1-4 | Xsorbifolium011852.2 | 341 | 36.84 | 8.59 | -0.579 | BES1_N | 细胞核 | 7 | ||||||||
XsBZR1-5 | Xsorbifolium012965.1 | 327 | 34.96 | 8.60 | -0.627 | BES1_N | 细胞核 | 7 | ||||||||
XsBZR1- 6 | Xsorbifolium013243.1 | 226 | 23.89 | 10.21 | -0.365 | BES1_N | 细胞核 | 7 | ||||||||
XsBZR1- 7 | Xsorbifolium015469.1 | 328 | 35.46 | 8.58 | -0.547 | BES1_N | 细胞核 | 9 | ||||||||
XsBZR1- 8 | Xsorbifolium019507.1 | 136 | 15.89 | 9.59 | -1.113 | BES1_N | 细胞核 | 12 | ||||||||
XsBZR1- 9 | Xsorbifolium024342.1 | 325 | 35.05 | 8.94 | -0.619 | BES1_N | 细胞核 | 15 |
[20] | MA Y X. Variation of seed characteristics and selection of superior rootstock provenance of Xanthoceras sorbifolia Bunge[D]. Hohhot: Inner Mongolia Agricultural University, 2021.DOI: 10.27229/d.cnki.gnmnu.2021.000047. |
[21] | 刘志. 文冠果WRKY转录因子家族的鉴定及非生物胁迫响应模式分析[D]. 哈尔滨: 东北林业大学, 2020. |
LIU Z. Identification of WRKY transcription factor family in Xanthoceras sorbifolia Bunge and analysis of abiotic stress response pattern[D].Harbin: Northeast Forestry University, 2020.DOI: 10.27009/d.cnki.gdblu.2020.000390. | |
[22] | 常巧颖. 文冠果bZIP转录因子家族鉴定和非生物胁迫应答模式分析[D]. 哈尔滨: 东北林业大学, 2020. |
CHANG Q Y. Identification of bZIP transcription factor family in Xanthoceras sorbifolia Bunge and analysis of abiotic stress response pattern[D].Harbin: Northeast Forestry University, 2020.DOI: 10.27009/d.cnki.gdblu.2020.000536. | |
[23] | 杨娟, 姜阳明, 周芳, 等. PEG模拟干旱胁迫对不同抗旱性玉米品种苗期形态与生理特性的影响[J]. 作物杂志, 2021(1):82-89. |
YANG J, JIANG Y M, ZHOU F, et al. Effects of PEG simulated drought stress on seedling morphology and physiological characteristics of different drought-resistance maize varieties[J]. Crops, 2021(1):82-89.DOI:10.16035/j.issn.1001-7283.2021.01.012. | |
[24] | BI Q X, WANG M K, LI J, et al. The phased chromosome-scale genome of yellowhorn sheds light on the mechanism of petal color change[J]. Hortic Plant J, 2023, 9(6):1193-1206.DOI:10.1016/j.hpj.2023.05.010. |
[25] | LANG Y H, LIU Z. Basic Helix-Loop-Helix (bHLH) transcription factor family in Yellow horn (Xanthoceras sorbifolia Bunge):genome-wide characterization,chromosome location,phylogeny,structures and expression patterns[J]. Int J Biol Macromol, 2020, 160:711-723.DOI:10.1016/j.ijbiomac.2020.05.253. |
[26] | 周晔, 赵璇, 王璐, 等. 植物BZR家族基因调控非生物胁迫应答和生长发育的研究进展[J]. 中国油料作物学报, 2020, 42(4):499-511. |
ZHOU Y, ZHAO X, WANG L, et al. Research advances on plant BZR family genes in regulating abiotic stress response and development[J]. Chin J Oil Crop Sci, 2020, 42(4):499-511.DOI:10.19802/j.issn.1007-9084.2020163. | |
[27] | 王黎明, 杨瑞珍, 孙加强. 油菜素内酯调控作物农艺性状和非生物胁迫响应的研究进展[J]. 生物工程学报, 2022, 38(1):34-49. |
WANG L M, YANG R Z, SUN J Q. Regulation of crop agronomic traits and abiotic stress responses by brassinosteroids:a review[J]. Chin J Biotechnol, 2022, 38(1):34-49.DOI:10.13345/j.cjb.210236. | |
[28] | YANG J, WU Y, LI L, et al. Comprehensive analysis of the BES1 gene family and its expression under abiotic stress and hormone treatment in Populus trichocarpa[J]. Plant Physiol Biochem, 2022, 173:1-13.DOI:10.1016/j.plaphy.2022.01.019. |
[29] | 尹魁林, 程莎莎, 艾长丰, 等. 枣BZR基因家族的鉴定及其在果实发育中的表达分析[J/OL]. 分子植物育种:1-13[2024-03-26]. |
YIN K L, CHENG S S, AI C F, et al. Genome-wide identification of ZjBZR gene family and expression analysis in jujube fruit[J/OL]. Molecular Plants Breeding:1-13. [2024-03-26]. . | |
[30] | FENG W Q, ZHANG H, CAO Y, et al. Maize ZmBES1/BZR1-1 transcription factor negatively regulates drought tolerance[J]. Plant Physiol Biochem, 2023,205:108188.DOI:10.1016/j.plaphy.2023.108188. |
[31] | 明川. 玉米BES1/BZR1转录因子基因鉴定[D]. 雅安: 四川农业大学, 2019. |
MING C. Identification of transcription factor gene BES1/BZR1 in maize[D]. Ya’an: Sichuan Agricultural University, 2019.DOI: 10.27345/d.cnki.gsnyu.2019.000495. | |
[32] | SAHA G, PARK J I, JUNG H J, et al. Molecular characterization of BZR transcription factor family and abiotic stress induced expression profiling in Brassica rapa[J]. Plant Physiol Biochem, 2015, 92:92-104.DOI:10.1016/j.plaphy.2015.04.013. |
[33] | 杜巧丽, 刘均霞, 陈美晴, 等. 高粱BR信号转录因子BZR1基因家族的鉴定及激素应答分析[J]. 植物保护学报, 2022, 49(3):848-856. |
DU Q L, LIU J X, CHEN M Q, et al. Identification of Sorghum BR signal transcription factor BZR1 gene family and analysis of hormone response[J]. J Plant Prot, 2022, 49(3):848-856.DOI:10.13802/j.cnki.zwbhxb.2022.2020206. | |
[1] | YANG Y Z, CHU C C, QIAN Q, et al. Leveraging brassinosteroids towards the next green revolution[J]. Trends Plant Sci, 2024, 29(1):86-98.DOI:10.1016/j.tplants.2023.09.005. |
[2] | 王孟珂, 杨晓明, 汪贵斌, 等. 外施24-表油菜素内酯(EBR)对银杏叶片发育和生理特征影响[J]. 南京林业大学学报(自然科学版), 2023, 47(4):81-87. |
WANG M K, YANG X M, WANG G B, et al. Effects of external 24-epibrassinolide (EBR) application on the development and physiological characteristics of Ginkgo biloba leaves[J]. J Nanjing For Univ (Nat Sci Ed), 2023, 47(4):81-87.DOI:10.12302/j.issn.1000-2006.202109026. | |
[3] | NOLAN T M, VUKAŠINOVIĆ N, LIU D R, et al. Brassinosteroids:multidimensional regulators of plant growth,development,and stress responses[J]. Plant Cell, 2020, 32(2):295-318.DOI:10.1105/tpc.19.00335.. |
[4] | SHE J, HAN Z F, KIM T W, et al. Structural insight into brassinosteroid perception by BRI1[J]. Nature, 2011, 474(7352):472-476.DOI:10.1038/nature10178. |
[5] | NAM K H, LI J M. BRI1/BAK1,a receptor kinase pair mediating brassinosteroid signaling[J]. Cell, 2002, 110(2):203-212.DOI:10.1016/s0092-8674(02)00814-0. |
[6] | WANG Z Y, NAKANO T, GENDRON J, et al. Nuclear-localized BZR1 mediates brassinosteroid-induced growth and feedback suppression of brassinosteroid biosynthesis[J]. Dev Cell, 2002, 2(4):505-513.DOI:10.1016/s1534-5807(02)00153-3. |
[7] | NOSAKI S, MIYAKAWA T, XU Y Q, et al. Structural basis for brassinosteroid response by BIL1/BZR1[J]. Nat Plants, 2018, 4(10):771-776.DOI:10.1038/s41477-018-0255-1. |
[8] | SUN Y, FAN X Y, CAO D M, et al. Integration of brassinosteroid signal transduction with the transcription network for plant growth regulation in Arabidopsis[J]. Dev Cell, 2010, 19(5):765-777.DOI:10.1016/j.devcel.2010.10.010. |
[9] | YU X F, LI L, ZOLA J, et al. A brassinosteroid transcriptional network revealed by genome-wide identification of BESI target genes in Arabidopsis thaliana[J]. Plant J, 2011, 65(4):634-646.DOI:10.1111/j.1365-313X.2010.04449.x. |
[10] | REINHOLD H, SOYK S, SIMKOVÁ K, et al. β-amylase-like proteins function as transcription factors in Arabidopsis,controlling shoot growth and development[J]. Plant Cell, 2011, 23(4):1391-1403.DOI:10.1105/tpc.110.081950. |
[34] | WANG D Z, ZUO J H, LIU S, et al. BRI1 EMS SUPPRESSOR1 genes regulate abiotic stress and anther development in wheat (Triticum aestivum L.)[J]. Front Plant Sci, 2023,14:1219856.DOI:10.3389/fpls.2023.1219856. |
[35] | 陈旭, 沈春洋, 莫福磊, 等. 番茄BZR基因家族鉴定及非生物胁迫下表达模式分析[J]. 东北农业大学学报, 2021, 52(11):9-17. |
CHEN X, SHEN C Y, MO F L, et al. Identification of BZR gene family in tomato and expression patterns analysis under abiotic stress[J]. J Northeast Agric Univ, 2021, 52(11):9-17.DOI:10.19720/j.cnki.issn.1005-9369.2021.11.002. | |
[36] | AN S M, LIU Y, SANG K Q, et al. Brassinosteroid signaling positively regulates abscisic acid biosynthesis in response to chilling stress in tomato[J]. J Integr Plant Biol, 2023, 65(1):10-24.DOI:10.1111/jipb.13356. |
[37] | ZUO C L, ZHANG L, YAN X Y, et al. Evolutionary analysis and functional characterization of BZR1 gene family in celery revealed their conserved roles in brassinosteroid signaling[J]. BMC Genomics, 2022, 23(1):568.DOI:10.1186/s12864-022-08810-3. |
[38] | LUO S L, ZHANG G B, ZHANG Z Y, et al. Genome-wide identification and expression analysis of BZR gene family and associated responses to abiotic stresses in cucumber (Cucumis sativus L.)[J]. BMC Plant Biol, 2023, 23(1):214.DOI:10.1186/s12870-023-04216-9. |
[39] | LI Y Y, HE L L, LI J, et al. Genome-wide identification,characterization,and expression profiling of the legume BZR transcription factor gene family[J]. Front Plant Sci, 2018,9:1332.DOI:10.3389/fpls.2018.01332. |
[40] | CHEN X W, WU X Y, QIU S Y, et al. Genome-wide identification and expression profiling of the BZR transcription factor gene family in Nicotiana benthamiana[J]. Int J Mol Sci, 2021, 22(19):10379.DOI:10.3390/ijms221910379. |
[41] | LI H, YE K Y, SHI Y T, et al. BZR1 positively regulates freezing tolerance via CBF-dependent and CBF-independent pathways in Arabidopsis[J]. Mol Plant, 2017, 10(4):545-559.DOI:10.1016/j.molp.2017.01.004. |
[42] | LIU J L, YANG R C, JIAN N, et al. Putrescine metabolism modulates the biphasic effects of brassinosteroids on canola and Arabidopsis salt tolerance[J]. Plant Cell Environ, 2020, 43(6):1348-1359.DOI:10.1111/pce.13757. |
[43] | WANG X X, CHEN X D, WANG Q J, et al. MdBZR1 and MdBZR1-2 like transcription factors improves salt tolerance by regulating gibberellin biosynthesis in apple[J]. Front Plant Sci, 2019,10:1473.DOI:10.3389/fpls.2019.01473. |
[11] | YIN Y H, VAFEADOS D, TAO Y, et al. A new class of transcription factors mediates brassinosteroid: regulated gene expression in Arabidopsis[J]. Cell, 2005, 120(2):249-259.DOI:10.1016/j.cell.2004.11.044. |
[12] | THALMANN M, COIRO M, MEIER T, et al. The evolution of functional complexity within the β-amylase gene family in land plants[J]. BMC Evol Biol, 2019, 19(1):66.DOI:10.1186/s12862-019-1395-2. |
[13] | 沈春洋. 番茄BZR基因家族生物信息学分析及抗逆基因功能鉴定[D]. 哈尔滨: 东北农业大学, 2022. |
SHEN C Y. Bioinformatics analysis of tomato BZR gene family and functional identification of stress-resistant genes[D].Harbin: Northeast Agricultural University, 2022.DOI: 10.27010/d.cnki.gdbnu.2022.000291. | |
[14] | CAO X, KHALIQ A, LU S, et al. Genome-wide identification and characterization of the BES1 gene family in apple (Malus domestica)[J]. Plant Biol, 2020, 22(4):723-733.DOI:10.1111/plb.13109. |
[15] | CUI X Y, GAO Y, GUO J, et al. BES/BZR transcription factor TaBZR2 positively regulates drought responses by activation of TaGST1[J]. Plant Physiol, 2019, 180(1):605-620.DOI:10.1104/pp.19.00100. |
[16] | JIA C G, ZHAO S K, BAO T T, et al. Tomato BZR/BES transcription factor SlBZR1 positively regulates BR signaling and salt stress tolerance in tomato and Arabidopsis[J]. Plant Sci, 2021,302:110719.DOI:10.1016/j.plantsci.2020.110719. |
[17] | SUN Z T, LIU X Z, ZHU W D, et al. Molecular traits and functional exploration of BES1 gene family in plants[J]. Int J Mol Sci, 2022, 23(8):4242.DOI:10.3390/ijms23084242. |
[18] | ZHAO Y, LIU X J, WANG M K, et al. Transcriptome and physiological analyses provide insights into the leaf epicuticular wax accumulation mechanism in yellowhorn[J]. Hortic Res, 2021, 8(1):134.DOI:10.1038/s41438-021-00564-5. |
[19] | YU H Y, FAN S Q, BI Q X, et al. Seed morphology,oil content and fatty acid composition variability assessment in yellow horn (Xanthoceras sorbifolium Bunge) germplasm for optimum biodiesel production[J]. Ind Crops Prod, 2017, 97:425-430.DOI:10.1016/j.indcrop.2016.12.054. |
[20] | 麻云霞. 文冠果种子特性变异及优良砧用种源选择[D]. 呼和浩特: 内蒙古农业大学, 2021. |
[44] | FUJITA M, FUJITA Y, MARUYAMA K, et al. A dehydration-induced NAC protein,RD26,is involved in a novel ABA-dependent stress-signaling pathway[J]. Plant J, 2004, 39(6):863-876.DOI:10.1111/j.1365-313X.2004.02171.x. |
[45] | YE H X, LIU S Z, TANG B Y, et al. RD26 mediates crosstalk between drought and brassinosteroid signalling pathways[J]. Nat Commun, 2017,8:14573.DOI:10.1038/ncomms14573. |
[1] | SUN Yonglian, GAO Yunpeng, HOU Jing, WANG Wenwu, WU Xuelian, LI Shuxian. Differential proteomic analysis on dormant and dormancy releasing seeds of Cercis chinensis [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2025, 49(3): 137-143. |
[2] | CHEN Juyan, LI He, GUO Weizhen, XU Chaoran, DENG Lunxiu. The reproductive system and pollination biology of endangered Camellia huana [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2025, 49(3): 153-162. |
[3] | YANG Haiyan, WU Yaqiong, ZHANG Chunhong, LYU Lianfei, WU Wenlong, WEI Linxiao, LI Weilin. A comparative analysis of sugar metabolism-related characteristics in different development stage fruits of six blueberry cultivars [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2025, 49(3): 73-82. |
[4] | QI Ya, WANG Gaiping, XUANYUAN Xintong, PENG Daqing, LI Shuomin, LI Shouke, CAO Fuliang. Evaluation of medicinal asexual strains of Xanthoceras sorbifolium [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2025, 49(2): 38-44. |
[5] | CHEN Shengkan, GUO Dongqiang, DENG Ziyu, TANG Qinglan, LIAO Changkun, YANG Zhiwang, ZHU Yuanli, LI Changrong. Stability evaluation on tree height for introduced provenances of Corymbia citriodora subsp. variegata [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2025, 49(2): 67-74. |
[6] | YAO Junxiu, REN Fei, WANG Yinhua, LI Qinghua, YAN Liping, ZHENG Yan, WU Dejun. Genetic diversity of germplasm resources of Sambucus based on SSR fluorescent marker [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2025, 49(2): 75-82. |
[7] | KE Xin, FEI Qi, XIA Xinrui, YE Jianren, ZHU Lihua. The factors influencing the embryogenic callus initiation and somatic embryo yield in Pinus elliottii resistant to pine needle brown spot disease [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2025, 49(1): 87-94. |
[8] | LIN Qiang, XU Jin, LI Shangqian, LIN Yunbin, ZHANG Yunqing, OUYANG Lei. The early selection and analysis of genetic variation of Cryptomeria japonica half-sib progeny from seed orchard in Fuding, Fujian Province [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2025, 49(1): 78-86. |
[9] | JIANG Bo, AN Xinmin. Precise genomic editing technology and its application in the improvement of woody plants [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2025, 49(1): 11-20. |
[10] | ZHANG Weixi, DING Mi, SU Xiaohua, LI Aiping, WANG Xiaojiang, YU Jinjin, LI Zhenghong, HUANG Qinjun, DING Changjun. Heterosis and drought resistance assessment of Populus simonii × P. nigra F1 hybrids based on growth traits and leaf anatomical structures [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2025, 49(1): 46-58. |
[11] | YANG Yuanmu, LI Na, CHEN Xinyu, XU Fang, PAN Wen, ZHANG Weihua. Study on wood variation of provenances and clones of Castanopsis hystrix [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2024, 48(6): 41-50. |
[12] | YAN Pingyu, ZHANG Lei, WANG Jiaxing, FENG Kele, WANG Haohao, ZHANG Hanguo. Analysis of genetic diversity and construction of core collections of Korean pine (Pinus koraiensis) natural population [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2024, 48(5): 69-80. |
[13] | WANG Jiaxing, YAN Pingyu, SUN Baifei, LIU Jinhong, FENG Kele, ZHANG Hanguo. Growth variation and superior families early selection of Larix olgensis free-pollinated families [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2024, 48(5): 81-89. |
[14] | KUANG Zeyu, PENG Ye, FANG Yanming. Effects of volatile organic components of Ilex rotunda on its insect pollinator, Apis cerana [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2024, 48(4): 254-260. |
[15] | LIU Li, QU Yinquan, YU Yanhao, WANG Qian, FU Xiangxiang. Analysis of SSR locus based on the whole genome sequences of Cyclocarya paliurus and the development of polymorphic primers [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2024, 48(4): 67-75. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||