Cloning of the Liriodendron chinense LcPIN1a genes and its effect on plant growth and development

HAO Zhaodong, MA Xiaoxiao, WANG Dandan, LU Ye, SHI Jisen, CHEN Jinhui

JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2024, Vol. 48 ›› Issue (6) : 51-61.

PDF(5246 KB)
PDF(5246 KB)
JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2024, Vol. 48 ›› Issue (6) : 51-61. DOI: 10.12302/j.issn.1000-2006.202404005

Cloning of the Liriodendron chinense LcPIN1a genes and its effect on plant growth and development

Author information +
History +

Abstract

【Objective】This study aimed to explore the role of the auxin transporter PIN1 in plant growth and development in Liriodendron chinense.【Method】Three PIN1 homologous proteins were identified in the Liriodendron genome using bioinformatic methods, and expression pattern analyses of the three LcPIN1s genes were performed in different tissues and response to various abiotic stresses. An overexpression vector driven by the CaMV35S promoter was then constructed and transformed into Arabidopsis and Liriodendron×sinoamericanum, followed by phenotypic determination of growth and developmental traits in the transgenic positive lines.【Result】Three PIN1 homologous proteins were identified in the Liriodendron genome, named LcPIN1a, LcPIN1b and LcPIN1c. Expression pattern analyses showed that LcPIN1a was mainly expressed in leaves, while LcPIN1b and LcPIN1c were primarily expressed in roots and stems and stigmas when the plantlets transitioned into reproductive growth. In addition, all three LcPIN1 genes transcriptionally responded to drought stress, with LcPIN1b and LcPIN1c showing dependence on the biosynthesis of endogenous ABA, while LcPIN1a does not. Root length and plant height were significantly reduced in LcPIN1a-heterologous overexpression (LcPIN1a-HO) lines compared to wild-type Arabidopsis. The number of stamens was predominantly five in LcPIN1a-HO lines, whereas wild-type Arabidopsis typically contained six stamens. The regeneration of plantlets in LcPIN1a-overexpressing (LcPIN1a-OE) Liriodendron×sinoamericanum was significantly reduced compared to wild-type plants. In addition, the root length and plant height of LcPIN1a-OE regenerated seedlings were significantly lower than those of the wild type. The root structure of LcPIN1a-OE plants was significantly changed, with the taproot being less distinct.【Conclusion】The PIN1 proteins of L. chinense play a crucial role in vegetative and reproductive growth. Overexpression of LcPIN1 genes can be detrimental to normal plant growth and development.

Key words

Liriodendron chinense / auxin transporter / PIN1 gene / growth and development

Cite this article

Download Citations
HAO Zhaodong , MA Xiaoxiao , WANG Dandan , et al . Cloning of the Liriodendron chinense LcPIN1a genes and its effect on plant growth and development[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2024, 48(6): 51-61 https://doi.org/10.12302/j.issn.1000-2006.202404005

References

[1]
ZHAO Y D. Auxin biosynthesis and its role in plant development[J]. Annu Rev Plant Biol, 2010,61:49-64.DOI: 10.1146/annurev-arplant-042809-112308.
[2]
FUKUI K, HAYASHI K I. Manipulation and sensing of auxin metabolism,transport and signaling[J]. Plant Cell Physiol, 2018, 59(8):1500-1510.DOI: 10.1093/pcp/pcy076.
[3]
NARAMOTO S. Polar transport in plants mediated by membrane transporters:focus on mechanisms of polar auxin transport[J]. Curr Opin Plant Biol, 2017, 40:8-14.DOI: 10.1016/j.pbi.2017.06.012.
[4]
TAN S T, LUSCHNIG C, FRIML J. Pho-view of auxin:reversible protein phosphorylation in auxin biosynthesis,transport and signaling[J]. Mol Plant, 2021, 14(1):151-165.DOI: 10.1016/j.molp.2020.11.004.
[5]
ADAMOWSKI M, FRIML J. PIN-dependent auxin transport:action,regulation,and evolution[J]. Plant Cell, 2015, 27(1):20-32.DOI: 10.1105/tpc.114.134874.
[6]
BLILOU I, XU J, WILDWATER M, et al. The PIN auxin efflux facilitator network controls growth and patterning in Arabidopsis roots[J]. Nature, 2005, 433(7021):39-44.DOI: 10.1038/nature03184.
[7]
FRIML J, BENKOVÁ E, BLILOU I, et al. AtPIN4 mediates sink-driven auxin gradients and root patterning in Arabidopsis[J]. Cell, 2002, 108(5):661-673.DOI: 10.1016/s0092-8674(02)00656-6.
[8]
GÄLWEILER L, GUAN C, MÜLLER A, et al. Regulation of polar auxin transport by AtPIN1 in Arabidopsis vascular tissue[J]. Science, 1998, 282(5397):2226-2230.DOI: 10.1126/science.282.5397.2226.
[9]
FRIML J, VIETEN A, SAUER M, et al. Efflux-dependent auxin gradients establish the apical-basal axis of Arabidopsis[J]. Nature, 2003, 426(6963):147-153.DOI: 10.1038/nature02085.
[10]
MÜLLER A, GUAN C, GÄLWEILER L, et al. AtPIN2 defines a locus of Arabidopsis for root gravitropism control[J]. EMBO J, 1998, 17(23):6903-6911.DOI: 10.1093/emboj/17.23.6903.
[11]
FRIML J, WISNIEWSKA J, BENKOVÁ E, et al. Lateral relocation of auxin efflux regulator PIN3 mediates tropism in Arabidopsis[J]. Nature, 2002, 415(6873):806-809.DOI: 10.1038/415806a.
[12]
DING Z J, WANG B J, MORENO I, et al. ER-localized auxin transporter PIN8 regulates auxin homeostasis and male gametophyte development in Arabidopsis[J]. Nat Commun, 2012,3:941.DOI: 10.1038/ncomms1941.
[13]
SIMON S, SKŮPA P, VIAENE T, et al. PIN6 auxin transporter at endoplasmic reticulum and plasma membrane mediates auxin homeostasis and organogenesis in Arabidopsis[J]. New Phytol, 2016, 211(1):65-74.DOI: 10.1111/nph.14019.
[14]
OKADA K, UEDA J, KOMAKI M K, et al. Requirement of the auxin polar transport system in early stages of Arabidopsis floral bud formation[J]. Plant Cell, 1991, 3(7):677-684.DOI: 10.1105/tpc.3.7.677.
[15]
GOVINDARAJU P, VERNA C, ZHU T B, et al. Vein patterning by tissue-specific auxin transport[J]. Development, 2020, 147(13):dev187666.DOI: 10.1242/dev.187666.
[16]
NOH B, BANDYOPADHYAY A, PEER W A, et al. Enhanced gravi-and phototropism in plant mdr mutants mislocalizing the auxin efflux protein PIN1[J]. Nature, 2003, 423(6943):999-1002.DOI: 10.1038/nature01716.
[17]
LI Y, ZHU J S, WU L L, et al. Functional divergence of PIN1 paralogous genes in rice[J]. Plant Cell Physiol, 2019, 60(12):2720-2732.DOI: 10.1093/pcp/pcz159.
[18]
郝日明, 贺善安, 汤诗杰, 等. 鹅掌楸在中国的自然分布及其特点[J]. 植物资源与环境, 1995, 4(1):1-6.
HAO R M, HE S A, TANG S J, et al. Geographical distribution of Liridendron chinense in China and its significance[J]. J Plant Resour Environ, 1995, 4(1):1-6.
[19]
PARKS C R, MILLER N G, WENDEL J F, et al. Genetic divergence within the genus Liriodendron (Magnoliaceae)[J]. Ann Mo Bot Gard, 1983, 70(4):658.DOI: 10.2307/2398983.
[20]
PARKS C R, WENDEL J F. Molecular divergence between Asian and north American species of Liriodendron (Magnoliaceae) with implications for interpretation of fossil floras[J]. Am J Bot, 1990, 77(10):1243.DOI: 10.2307/2444585.
[21]
李火根, 施季森. 杂交鹅掌楸良种选育与种苗繁育[J]. 林业科技开发, 2009, 23(3):1-5.
LI H G, SHI J S. Breeding and propagation of Liriodendron hybrids[J]. J For Eng, 2009, 23(3):1-5.DOI: 10.3969/j.issn.1000-8101.2009.03.001.
[22]
向其柏, 王章荣. 杂交马褂木的新名称:亚美马褂木[J]. 南京林业大学学报(自然科学版), 2012, 36(2):1-2.
SHANG C B, WANG Z R. A new scientific name of hybrid Liriodendron: L. sino americanum[J]. J Nanjing For Univ (Nat Sci Ed), 2012, 36(2):1-2.DOI: 10.3969/j.issn.1000-2006.2012.02.001.
[23]
CHEN J H, HAO Z D, GUANG X M, et al. Liriodendron genome sheds light on angiosperm phylogeny and species-pair differentiation[J]. Nat Plants, 2019, 5(1):18-25.DOI: 10.1038/s41477-018-0323-6.
[24]
陈金慧, 施季森, 诸葛强, 等. 杂交鹅掌楸体细胞胚胎发生研究[J]. 林业科学, 2003, 39(4):49-53,177.
CHEN J H, SHI J S, ZHUGE Q, et al. Studies on the somatic embryogenesis of Liriodendron hybrids (L. chinense × L. tulipifera)[J]. Sci Silvae Sin, 2003, 39(4):49-53,177.DOI: 10.3321/j.issn:1001-7488.2003.04.008.
[25]
LI M P, WANG D, LONG X F, et al. Agrobacterium-mediated genetic transformation of embryogenic callus in a Liriodendron hybrid (L.chinense × L.tulipifera)[J]. Front Plant Sci, 2022,13:802128.DOI: 10.3389/fpls.2022.802128.
[26]
HU L F, WANG P K, LONG X F, et al. The PIN gene family in relic plant L.chinense:genome-wide identification and gene expression profiling in different organizations and abiotic stress responses[J]. Plant Physiol Biochem, 2021, 162:634-646.DOI: 10.1016/j.plaphy.2021.03.030.
[27]
LI R, PAN Y, HU L F, et al. PIN3 from Liriodendron may function in inflorescence development and root elongation[J]. Forests, 2022, 13(4):568.DOI: 10.3390/f13040568.
[28]
BERARDINI T Z, REISER L, LI D H, et al. The Arabidopsis information resource:making and mining the “gold standard” annotated reference plant genome[J]. Genesis, 2015, 53(8):474-485.DOI: 10.1002/dvg.22877.
[29]
JOHNSON M, ZARETSKAYA I, RAYTSELIS Y, et al. NCBI BLAST:a better web interface[J]. Nucleic Acids Res, 2008, 36(Web Server issue):5-9.DOI: 10.1093/nar/gkn201.
[30]
GOODSTEIN D M, SHU S Q, HOWSON R, et al. Phytozome:a comparative platform for green plant genomics[J]. Nucleic Acids Res, 2012, 40(Database issue):D1178-D1186.DOI: 10.1093/nar/gkr944.
[31]
SIEVERS F, HIGGINS D G. Clustal Omega for making accurate alignments of many protein sequences[J]. Protein Sci, 2018, 27(1):135-145.DOI: 10.1002/pro.3290.
[32]
TOGKOUSIDIS A, KOZLOV O M, HAAG J, et al. Adaptive RAxML-NG:accelerating phylogenetic inference under maximum likelihood using dataset difficulty[J]. Mol Biol Evol, 2023, 40(10):msad227.DOI: 10.1093/molbev/msad227.
[33]
CHEN C J, WU Y, LI J W, et al. TBtools-Ⅱ:a“one for all,all for one” bioinformatics platform for biological big-data mining[J]. Mol Plant, 2023, 16(11):1733-1742.DOI: 10.1016/j.molp.2023.09.010.
[34]
LETUNIC I, BORK P. Interactive tree of life (iTOL) v5:an online tool for phylogenetic tree display and annotation[J]. Nucleic Acids Res, 2021, 49(W1):293-296.DOI: 10.1093/nar/gkab301.
[35]
OMASITS U, AHRENS C H, MÜLLER S, et al. Protter:interactive protein feature visualization and integration with experimental proteomic data[J]. Bioinformatics, 2014, 30(6):884-886.DOI: 10.1093/bioinformatics/btt607.
[36]
LI T T, YUAN W G, QIU S, et al. Selection of reference genes for gene expression analysis in Liriodendron hybrids’ somatic embryogenesis and germinative tissues[J]. Sci Rep, 2021, 11(1):4957.DOI: 10.1038/s41598-021-84518-w.
[37]
LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2 (-Delta Delta C(T)) Method[J]. Methods, 2001, 25(4):402-408.DOI: 10.1006/meth.2001.1262.
[38]
MAVRODIEV E V, DERVINIS C, WHITTEN W M, et al. A new,simple,highly scalable,and efficient protocol for genomic DNA extraction from diverse plant taxa[J]. Appl Plant Sci, 2021, 9(3):e11413.DOI: 10.1002/aps3.11413.
[39]
CLOUGH S J, BENT A F. Floral dip:a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana[J]. Plant J, 1998, 16(6):735-743.DOI: 10.1046/j.1365-313x.1998.00343.x.
[40]
KRECEK P, SKUPA P, LIBUS J, et al. The PIN-FORMED (PIN) protein family of auxin transporters[J]. Genome Biol, 2009, 10(12):249.DOI: 10.1186/gb-2009-10-12-249.
[41]
SANCHO-ANDRÉS G, SORIANO-ORTEGA E, GAO C J, et al. Sorting motifs involved in the trafficking and localization of the PIN1 auxin efflux carrier[J]. Plant Physiol, 2016, 171(3):1965-1982.DOI: 10.1104/pp.16.00373.
[42]
MARCOTE M J, SANCHO-ANDRÉS G, SORIANO-ORTEGA E, et al. Sorting signals for PIN1 trafficking and localization[J]. Plant Signal Behav, 2016, 11(8):e1212801.DOI: 10.1080/15592324.2016.1212801.
[43]
HUANG F, ZAGO M K, ABAS L, et al. Phosphorylation of conserved PIN motifs directs Arabidopsis PIN1 polarity and auxin transport[J]. Plant Cell, 2010, 22(4):1129-1142.DOI: 10.1105/tpc.109.072678.
[44]
WU W H, ZHU S, XU L, et al. Genome-wide identification of the Liriodendron chinense WRKY gene family and its diverse roles in response to multiple abiotic stress[J]. BMC Plant Biol, 2022, 22(1):25.DOI: 10.1186/s12870-021-03371-1.
[45]
WU W H, ZHU S, ZHU L M, et al. Characterization of the Liriodendron chinense MYB gene family and its role in abiotic stress response[J]. Front Plant Sci, 2021,12:641280.DOI: 10.3389/fpls.2021.641280.
[46]
MROUE S, SIMEUNOVIC A, ROBERT H S. Auxin production as an integrator of environmental cues for developmental growth regulation[J]. J Exp Bot, 2018, 69(2):201-212.DOI: 10.1093/jxb/erx259.
[47]
GU Z L, STEINMETZ L M, GU X, et al. Role of duplicate genes in genetic robustness against null mutations[J]. Nature, 2003, 421(6918):63-66.DOI: 10.1038/nature01198.
[48]
TESSI T M, MAURINO V G, SHAHRIARI M, et al. AZG1 is a cytokinin transporter that interacts with auxin transporter PIN1 and regulates the root stress response[J]. New Phytol, 2023, 238(5):1924-1941.DOI: 10.1111/nph.18879.
[49]
BAWA G, LIU Z X, WU R, et al. PIN1 regulates epidermal cells development under drought and salt stress using single-cell analysis[J]. Front Plant Sci, 2022,13:1043204.DOI: 10.3389/fpls.2022.1043204.
[50]
ZHANG J, VANNESTE S, BREWER P B, et al. Inositol trisphosphate-induced Ca2+ signaling modulates auxin transport and PIN polarity[J]. Dev Cell, 2011, 20(6):855-866.DOI: 10.1016/j.devcel.2011.05.013.
[51]
XU M, ZHU L, SHOU H X, et al. A PIN1 family gene,OsPIN1,involved in auxin-dependent adventitious root emergence and tillering in rice[J]. Plant Cell Physiol, 2005, 46(10):1674-1681.DOI: 10.1093/pcp/pci183.
[52]
MRAVEC J, KUBES M, BIELACH A, et al. Interaction of PIN and PGP transport mechanisms in auxin distribution-dependent development[J]. Development, 2008, 135(20):3345-3354.DOI: 10.1242/dev.021071.
[53]
LI K, KAMIYA T, FUJIWARA T. Differential roles of PIN1 and PIN2 in root meristem maintenance under low-B conditions in Arabidopsis thaliana[J]. Plant Cell Physiol, 2015, 56(6):1205-1214.DOI: 10.1093/pcp/pcv047.
[54]
XU K J, SUN F L, WANG Y F, et al. The PIN1 family gene PvPIN1 is involved in auxin-dependent root emergence and tillering in switchgrass[J]. Genet Mol Biol, 2016, 39(1):62-72.DOI: 10.1590/1678-4685-GMB-2014-0300.
[55]
GUAN L, LI Y J, HUANG K H, et al. Auxin regulation and MdPIN expression during adventitious root initiation in apple cuttings[J]. Hortic Res, 2020, 7(1):143.DOI: 10.1038/s41438-020-00364-3.
[56]
ROTH O, YECHEZKEL S, SERERO O, et al. Slow release of a synthetic auxin induces formation of adventitious roots in recalcitrant woody plants[J]. Nat Biotechnol, 2024.DOI: 10.1038/s41587-023-02065-3.
PDF(5246 KB)

Accesses

Citation

Detail

Sections
Recommended
The full text is translated into English by AI, aiming to facilitate reading and comprehension. The core content is subject to the explanation in Chinese.

/