Analysis of trade-offs, synergies, and driving factors of ecosystem services in Baishanzu National Park

WANG Chaorui, ZHONG Jiahui, WANG Zeng, LIU Wei, ZHANG Yong, HU Zhaogui, WANG Dan, LIU Shenglong, LIN Jie

JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2025, Vol. 49 ›› Issue (5) : 249-257.

PDF(8357 KB)
PDF(8357 KB)
JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2025, Vol. 49 ›› Issue (5) : 249-257. DOI: 10.12302/j.issn.1000-2006.202405039

Analysis of trade-offs, synergies, and driving factors of ecosystem services in Baishanzu National Park

Author information +
History +

Abstract

【Objective】This study explores the trade-offs, synergies, and driving factors among the ecosystem services in Baishanzu National Park, providing support for formulating scientific ecological protection and management strategies.【Method】We quantified four ecosystem services-vegetation net primary productivity (NPP), soil conservation (SC), habitat quality (HQ), and water yield (WY)-in Baishanzu National Park from 2000 to 2020 by using the InVEST and the CASA models. Spearman correlation and geographically weighted regression (GWR) were used to analyze the relationships of trade-offs and synergies among ecosystem services, while the random forest modeling was used to explore the dominant drivers and marginal effects.【Result】From 2000 to 2020, the NPP in Baishanzu National Park nature reserve increased, the HQ declined slightly, and the SC and the WY decreased initially before rising. Spatially, the NPP, the SC, and the WY exhibited similar patterns with high values in central/northwestern regions, whereas the HQ peaked in central/northern areas. The increase in temperature had a significant impact on the relationship between the HQ and the NPP, while precipitation, elevation, and slope had a significant impact on the relationship between the SC and the WY.【Conclusion】The four ecosystem services demonstrated an overall synergy but showed obvious spatial heterogeneity. Climate change was the primary driver of trade-offs/synergies, followed by the degree of vegetation coverage and terrain factors. This indicates that when formulating ecological strategies must therefore account for interactions among these key factors and their potential nonlinear effects.

Key words

ecosystem services / trade-off and synergy / spatiotemporal variation / geographically weighted regression / random forest / Baishanzu National Park

Cite this article

Download Citations
WANG Chaorui , ZHONG Jiahui , WANG Zeng , et al . Analysis of trade-offs, synergies, and driving factors of ecosystem services in Baishanzu National Park[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2025, 49(5): 249-257 https://doi.org/10.12302/j.issn.1000-2006.202405039

References

[1]
COSTANZA R, D’ARGE R, DE GROOT R, et al. The value of the world’s ecosystem services and natural capital[J]. Ecological Economics, 1998, 25(1):3-15.DOI: 10.1016/S0921-8009(98)00020-2.
[2]
赵同谦, 欧阳志云, 郑华, 等. 中国森林生态系统服务功能及其价值评价[J]. 自然资源学报, 2004, 19(4):480-491.
ZHAO T Q, OUYANG Z Y, ZHENG H, et al. Forest ecosystem services and their valuation in China[J]. Journal of Natural Resources, 2004, 19(4):480-491. DOI: 10.3321/j.issn:1000-3037.2004.04.010.
[3]
孙庆祥, 周华荣. 阿尔泰山森林生态系统服务功能及其价值评估[J]. 干旱区地理, 2020, 43(5):1327-1336.
SUN Q X, ZHOU H R. Service function and value evaluation of the Altai Mountains forest ecosystem[J]. Arid Land Geography, 2020, 43(5):1327-1336.DOI: 10.12118/j.issn.1000-6060.2020.05.18.
[4]
PANDIT J, SHARMA A K. A comprehensive review of climate change’s imprint on ecosystems[J]. Journal of Water and Climate Change, 2023, 14(11):4273-4284.DOI: 10.2166/wcc.2023.476.
[5]
FOLEY J A, DEFRIES R, ASNER G P, et al. Global consequences of land use[J]. Science, 2005, 309(5734):570-574.DOI: 10.1126/science.1111772.
[6]
MA S, WANG L J, JIANG J, et al. Threshold effect of ecosystem services in response to climate change and vegetation coverage change in the Qinghai-Tibet Plateau ecological shelter[J]. Journal of Cleaner Production, 2021, 318:128592.DOI: 10.1016/j.jclepro.2021.128592.
[7]
ZHANG B, SHI Y T, WANG S. A review on the driving mechanisms of ecosystem services change[J]. Journal of Resources and Ecology, 2022, 13(1): 68-79. DOI: 10.5814/j.issn.1674-764x.2022.01.008.
[8]
RODRÍGUEZ J P, BEARD T D Jr, BENNETT E M, et al. Trade-offs across space,time,and ecosystem services[J]. Ecology and Society, 2006,11:art28.DOI: 10.5751/es-01667-110128.
[9]
BENNETT E M, PETERSON G D, GORDON L J. Understanding relationships among multiple ecosystem services[J]. Ecology Letters, 2009, 12(12):1394-1404. DOI: 10.1111/j.1461-0248.2009.01387.x.
[10]
庞彩艳, 文琦, 丁金梅, 等. 黄河上游流域生态系统服务变化及其权衡协同关系[J]. 生态学报, 2024, 44(12):5003-5013.
PANG C Y, WEN Q, DING J M, et al. Ecosystem services and their trade-offs and synergies in the upper reaches of the Yellow River basin[J]. Acta Ecologica Sinica, 2024, 44(12):5003-5013.DOI: 10.20103/j.stxb.202306281376.
[11]
WU J, GUO X, ZHU Q, et al. Threshold effects and supply-demand ratios should be considered in the mechanisms driving ecosystem services[J]. Ecological Indicators, 2022, 142:109281.DOI: 10.1016/j.ecolind.2022.109281.
[12]
YANG Y, YUAN X F, AN J J, et al. Drivers of ecosystem services and their trade-offs and synergies in different land use policy zones of Shaanxi Province,China[J]. Journal of Cleaner Production, 2024, 452:142077.DOI: 10.1016/j.jclepro.2024.142077.
[13]
LI G Y, JIANG C H, GAO Y, et al. Natural driving mechanism and trade-off and synergy analysis of the spatiotemporal dynamics of multiple typical ecosystem services in northeast Qinghai-Tibet Plateau[J]. Journal of Cleaner Production, 2022, 374:134075.DOI: 10.1016/j.jclepro.2022.134075.
[14]
DE WINTER J C F, GOSLING S D, POTTER J. Comparing the Pearson and Spearman correlation coefficients across distributions and sample sizes:a tutorial using simulations and empirical data[J]. Psychological Methods, 2016, 21(3):273-290.DOI: 10.1037/met0000079.
[15]
BREIMAN L. Random forests[J]. Machine Learning, 2001, 45(1):5-32. DOI:10.1023/A:1010933404324.
[16]
朱文泉, 潘耀忠, 张锦水. 中国陆地植被净初级生产力遥感估算[J]. 植物生态学报, 2007, 31(3):413-424.
ZHU W Q, PAN Y Z, ZHANG J S. Estimation of net primary productivity of Chinese terrestrial vegetation based on remote sensing[J]. Journal of Plant Ecology, 2007, 31(3):413-424.DOI: 10.17521/cjpe.2007.0050.
[17]
ZHOU Y, LI S J. BP neural network modeling with sensitivity analysis on monotonicity based Spearman coefficient[J]. Chemometrics and Intelligent Laboratory Systems, 2020, 200:103977.DOI: 10.1016/j.chemolab.2020.103977.
[18]
WAN M X, HAN Y W, SONG Y, et al. Estimating and projecting the effects of urbanization on the forest habitat quality in a highly urbanized area[J]. Urban Forestry & Urban Greening, 2024, 94:128270.DOI: 10.1016/j.ufug.2024.128270.
[19]
WANG L J, GONG J W, MA S, et al. Ecosystem service supply-demand and socioecological drivers at different spatial scales in Zhejiang Province,China[J]. Ecological Indicators, 2022, 140:109058.DOI: 10.1016/j.ecolind.2022.109058.
[20]
何刘洁, 郑博福, 万炜, 等. 长江经济带生态系统服务权衡与协同及其驱动因素[J]. 环境科学, 2024, 45(6):3318-3328.
HE L J, ZHENG B F, WAN W, et al. Trade-off and synergy of ecosystem services in the Yangtze River economic belt and its driving factors[J]. Environmental Science, 2024, 45(6):3318-3328.DOI: 10.13227/j.hjkx.202307135.
[21]
CHEN J H, WANG Y F, SUN J, et al. Precipitation dominants synergies and trade-offs among ecosystem services across the Qinghai-Tibet Plateau[J]. Global Ecology and Conservation, 2021,32:e01886.DOI: 10.1016/j.gecco.2021.e01886.
[22]
杨洁, 谢保鹏, 张德罡. 黄河流域生态系统服务权衡协同关系时空异质性[J]. 中国沙漠, 2021, 41(6):78-87.
YANG J, XIE B P, ZHANG D G. Spatial-temporal heterogeneity of ecosystem services trade-off synergy in the Yellow River basin[J]. Journal of Desert Research, 2021, 41(6):78-87.DOI: 10.7522/j.issn.1000-694X.2021.00088.
[23]
REN H Y, XU Z W, ISBELL F, et al. Exacerbated nitrogen limitation ends transient stimulation of grassland productivity by increased precipitation[J]. Ecological Monographs, 2017, 87(3):457-469.DOI: 10.1002/ecm.1262.
[24]
王欢, 高江波, 侯文娟. 基于地理探测器的喀斯特不同地貌形态类型区土壤侵蚀定量归因[J]. 地理学报, 2018, 73(9):1674-1686.
WANG H, GAO J B, HOU W J. Quantitative attribution analysis of soil erosion in different morphological types of geomorphology in Karst areas:based on the geographical detector method[J]. Acta Geographica Sinica, 2018, 73(9):1674-1686.DOI: 10.11821/dlxb201809005.
[25]
于德永, 郝蕊芳. 生态系统服务研究进展与展望[J]. 地球科学进展, 2020, 35(8):804-815.
YU D Y, HAO R F. Research progress and prospect of ecosystem services[J]. Advances in Earth Science, 2020, 35(8):804-815.DOI: 10.3969/j.issn.1000-3045.2012.03.011.
[26]
方露露, 许德华, 王伦澈, 等. 长江、黄河流域生态系统服务变化及权衡协同关系研究[J]. 地理研究, 2021, 40(3):821-838.
FANG L L, XU D H, WANG L C, et al. The study of ecosystem services and the comparison of trade-off and synergy in Yangtze River basin and Yellow River basin[J]. Geographical Research, 2021, 40(3):821-838.DOI: 10.11821/dlyj020200044.
[27]
高超, 赵军, 王玉纯, 等. 石羊河流域自然植被对生态系统服务的约束效应[J]. 生态学报, 2020, 40(9):2851-2862.
GAO C, ZHAO J, WANG Y C, et al. Study on the constraint effect of natural vegetation on ecosystem services in the Shiyang River basin[J]. Acta Ecologica Sinica, 2020, 40(9):2851-2862.DOI: 10.5846/stxb201904180786.
[28]
张宏锋, 欧阳志云, 郑华. 生态系统服务功能的空间尺度特征[J]. 生态学杂志, 2007, 26(9):1432-1437.
ZHANG H F, OUYANG Z Y, ZHENG H. Spatial scale characteristics of ecosystem services[J]. Chinese Journal of Ecology, 2007, 26(9):1432-1437. DOI: 10.3321/j.issn:1000-3037.2004.04.010.
PDF(8357 KB)

Accesses

Citation

Detail

Sections
Recommended
The full text is translated into English by AI, aiming to facilitate reading and comprehension. The core content is subject to the explanation in Chinese.

/