PDF(99855 KB)
Thin cloud removal method for forestry optical remote sensing images based on slow feature analysis and generative adversarial network
ZHU Songyu, LI Chao, JING Weipeng
Journal of Nanjing Forestry University (Natural Sciences Edition) ›› 2026, Vol. 50 ›› Issue (1) : 223-230.
PDF(99855 KB)
PDF(99855 KB)
Thin cloud removal method for forestry optical remote sensing images based on slow feature analysis and generative adversarial network
To address the issue of image distortion and reduced usability caused by thin cloud removal in optical remote sensing images, this study proposes a novel thin cloud removal method: SFGAN, that integrates slow feature analysis (SFA) with generative adversarial networks (GANs), aiming to enhance image quality and provide reliable data support for forestry remote sensing analysis.【Method】First, a slow-varying feature module is designed to calculate cloud reflectance and high-dimensional feature slowness. The slow-varying feature vectors are concatenated with random initial vectors as the generator input, improving cloud feature recognition. Second, cloud reflectance is utilized as a discriminative constraint factor to iteratively optimize the discriminator, thereby generating high-quality cloud-free images through adversarial training.【Result】Experiments on public datasets RICE1 and PRSC demonstrate that the SFGAN outperforms existing methods in both quantitative metrics (e.g., PSNR=33.740 7 and SSIM=0.958 2 on RICE1,PSNR=24.341 3 and SSIM=0.879 2 on PRSC) and visual assessments. Validation using Landsat 8 imagery shows SFGAN achieves superior cloud removal effects in both real and simulated cloud scenarios, with a processing time of 0.98 seconds per image.【Conclusion】The SFGAN framework effectively mitigates thin cloud interference in forestry optical remote sensing images by synergizing SFA and GANs, significantly improving data usability and analytical accuracy at the source level.
forestry optical remote sensing images / thin cloud removal / slow feature analysis (SFA) / generative adversarial networks (GANs)
| [1] |
李增元, 陈尔学. 中国林业遥感发展历程[J]. 遥感学报, 2021, 25(1):292-301.
|
| [2] |
|
| [3] |
徐萌, 王思涵, 郭仁忠, 等. 遥感影像云检测和云去除方法综述[J]. 计算机研究与发展, 2024, 61(6):1585-1607.
|
| [4] |
郭庭威, 黄红莲, 孙晓兵, 等. 环境二号卫星多光谱图像的薄云检测及去除[J]. 大气与环境光学学报, 2023, 18(4):383-400.
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
郑其光, 王仁芳, 邱虹, 等. 基于注意力机制和生成对抗网络的遥感影像云去除[J]. 遥感学报, 2025, 29(3):752-761.
|
| [17] |
蔡志丹, 方明, 李喆, 等. 基于高斯曲率和加权图总变分正则化的遥感图像盲去模糊算法[J]. 吉林大学学报(工学版), 2023, 53(9):2649-2658.
|
| [18] |
刘万军, 程裕茜, 曲海成. 基于生成对抗网络的图像自增强去雾算法[J]. 系统仿真学报, 2024, 36(5):1093-1106.
|
| [19] |
马得草, 鲜勇, 苏娟, 等. 基于改进的条件生成对抗网络的可见光红外图像转换算法[J]. 光子学报, 2023, 52(4):0410003.
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
向俊, 严恩萍, 姜镓伟, 等. 基于全卷积神经网络和低分辨率标签的森林变化检测研究[J]. 南京林业大学学报(自然科学版), 2024, 48 (1) :187-195.
|
| [24] |
杨帆, 赵增鹏, 张磊. 基于高斯混合模型的遥感影像云检测技术[J]. 南京林业大学学报(自然科学版), 2018, 42(4):134-140.
|
| [25] |
牛弘健, 刘文萍, 陈日强, 等. 基于Resnet的林地无人机图像去雾改进算法[J]. 南京林业大学学报(自然科学版). 2024, 48(2): 175-181.
|
/
| 〈 |
|
〉 |