Construction of Cunninghamia lanceolata tree crown width regression model based on deep learning algorithms

ZHOU Yuqi, SUN Yujun, XIE Yunhong, LIANG Ruiting, YAN Wen

Journal of Nanjing Forestry University (Natural Sciences Edition) ›› 2026, Vol. 50 ›› Issue (1) : 231-240.

PDF(6852 KB)
PDF(6852 KB)
Journal of Nanjing Forestry University (Natural Sciences Edition) ›› 2026, Vol. 50 ›› Issue (1) : 231-240. DOI: 10.12302/j.issn.1000-2006.202410029

Construction of Cunninghamia lanceolata tree crown width regression model based on deep learning algorithms

Author information +
History +

Abstract

【Objective】 This study constructed a deep learning-based crown width model for Cunninghamia lanceolata plantations in the Jiangle region, aiming to analyze the contributions of tree size, site quality, stand structure, and competition to crown width prediction. 【Method】Six deep neural network (DNN) models were developed, and the shapley additive explanations (SHAP) interpreter was employed to analyze the feature importance of each variable. Additionally, a generalized crown width model was built and compared with the DNN model that utilized the same set of optimally selected variables based on correlation coefficients, in order to validate the reliability of the DNN approach. 【Result】The constructed DNN models exhibited no overfitting, with stable root mean square error (RMSE) and mean absolute error (MAE) values in 10-fold cross-validation. The DNN model incorporating all 13 variables (DNN5) achieved the highest performance, with an R2 of 0.60. However, models with six input variables (DNN3 and DNN4) yielded R2 values of 0.58 and 0.57, respectively, which better meet practical application needs. The DNN6 model, constructed using variables selected based on their correlation coefficients, achieved an R2 of 0.54, outperforming the generalized crown width model (R2= 0.46) that used the same variables. The SHAP contribution value of DBH was the highest. Additionally, in the feature ranking, basal area (BA), stand density index (SDI), McIntosh evenness of diameter class (Emi), and Gini coefficient (GC) held important positions. The inclusion of both types of variables significantly improved prediction the accuracy of the crown width model. 【Conclusion】The results demonstrate that the constructed DNN model effectively predicted the crown width of C. lanceolata in the study area, indicating that deep learning holds significant potential for crown width modeling.

Key words

crown width model / Cunninghamia lanceolata (Chinese fir) / deep learning / deep neural netword (DNN) / SHAP interpretability analysis

Cite this article

Download Citations
ZHOU Yuqi , SUN Yujun , XIE Yunhong , et al . Construction of Cunninghamia lanceolata tree crown width regression model based on deep learning algorithms[J]. Journal of Nanjing Forestry University (Natural Sciences Edition). 2026, 50(1): 231-240 https://doi.org/10.12302/j.issn.1000-2006.202410029

References

[1]
周柏屹, 孙麟均, 吴鹏飞, 等. 杉木大径材培育研究进展[J]. 世界林业研究, 2024, 37(1):54-58.
ZHOU B Y, SUN L J, WU P F, et al. Research progress in cultivation of large-diameter timber tree of Chinese fir[J]. World Forestry Research, 2024, 37(1):54-58. DOI:10.13348/j.cnki.sjlyyj.2023.0105.y.
[2]
LIU C C, LI Y, YAN P, et al. How to improve the predictions of plant functional traits on ecosystem functioning?[J]. Frontiers in Plant Science, 2021, 12:622260. DOI:10.3389/fpls.2021.622260.
[3]
ATKINS J W, SHIKLOMANOV A, MATHES K C, et al. Effects of forest structural and compositional change on forest microclimates across a gradient of disturbance severity[J]. Agricultural and Forest Meteorology, 2023, 339:109566. DOI:10.1016/j.agrformet.2023.109566.
[4]
AHMED S, HILMERS T, UHL E, et al. Neighborhood competition modulates the link between crown structure and tree ring variability in monospecific and mixed forest stands[J]. Forest Ecology and Management, 2024, 560:121839. DOI:10.1016/j.foreco.2024.121839.
[5]
MARSHALL H D, MURPHY G E, BOSTON K. Evaluation of the economic impacts of length and diameter measurement error on mechanical harvesters and processors operating in pine stands[J]. Canadian Journal of Forest Research, 2006, 36(7):1661-1673. DOI:10.1139/x06-064.
[6]
雷相东, 张则路, 陈晓光. 长白落叶松等几个树种冠幅预测模型的研究[J]. 北京林业大学学报, 2006, 28(6):75-79.
LEI X D, ZHANG Z L, CHEN X G. Crown-width prediction models for several tree species including Larix olgensis in northeastern China[J]. Journal of Beijing Forestry University, 2006, 28(6):75-79. DOI:10.3321/j.issn:1000-1522.2006.06.013.
[7]
XU H, SUN Y J, WANG X J, et al. Linear mixed-effects models to describe individual tree crown width for China-fir in Fujian Province,southeast China[J]. PLoS One, 2015, 10(4):e0122257. DOI:10.1371/journal.pone.0122257.
[8]
LEI Y, FU L, AFFLECK D L R, et al. Additivity of nonlinear tree crown width models: aggregated and disaggregated model structures using nonlinear simultaneous equations[J]. Forest Ecology and Management, 2018, 427:372-382. DOI:10.1016/j.foreco.2018.06.013.
[9]
邱思玉, 孙玉军. 长白落叶松人工林单木冠幅模型[J]. 东北林业大学学报, 2021, 49(2):49-53.
QIU S Y, SUN Y J. Individual tree crown width prediction models for Larix olgensis plantation[J]. Journal of Northeast Forestry University, 2021, 49(2):49-53. DOI:10.13759/j.cnki.dlxb.2021.02.009.
[10]
吕乐, 董利虎, 李凤日. 黑龙江省东部地区天然椴树单木冠幅预测模型[J]. 东北林业大学学报, 2019, 47(7):37-42.
L, DONG L H, LI F R. Individual tree crown width prediction models for natural Tilia tuan in eastern Heilongjiang Province[J]. Journal of Northeast Forestry University, 2019, 47(7):37-42. DOI:10.13759/j.cnki.dlxb.2019.07.007.
[11]
钟思琪, 宁金魁, 黄锦程, 等. 基于混合效应的杉木人工林冠幅模型[J]. 森林与环境学报, 2024, 44(2):127-135.
ZHONG S Q, NING J K, HUANG J C, et al. Crown width model of Chinese fir plantation based on mixed effect[J]. Journal of Forest and Environment, 2024, 44(2):127-135. DOI:10.13324/j.cnki.jfcf.2024.02.003.
[12]
AMANULLAH M A, HABEEB R A A, NASARUDDIN F H, et al. Deep learning and big data technologies for IoT security[J]. Computer Communications, 2020, 151:495-517. DOI:10.1016/j.comcom.2020.01.016.
[13]
LECUN Y, BENGIO Y, HINTON G. Deep learning[J]. Nature, 2015, 521(7553):436-444. DOI:10.1038/nature14539.
[14]
AGGARWAL, CHARU C. Neural networks and deep learning[M]. Cham: Springer International Publishing, 2018. DOI:10.1007/978-3-319-94463-0.
[15]
HEATON J. Ian goodfellow,yoshua bengio,and aaron courville:deep learning[J]. Genetic Programming and Evolvable Machines, 2018, 19(1):305-307. DOI:10.1007/s10710-017-9314-z.
[16]
ERCANLI I. Innovative deep learning artificial intelligence applications for predicting relationships between individual tree height and diameter at breast height[J]. Forest Ecosystems, 2020, 7(1):12. DOI:10.1186/s40663-020-00226-3.
[17]
梁瑞婷, 孙玉军, 李芸. 深度学习和传统方法模拟杉木树高-胸径模型比较[J]. 林业科学研究, 2021, 34(6):65-72.
LIANG R T, SUN Y J, LI Y. Comparison of deep learning and traditional models to simulate the height-DBH relationship of Chinese fir[J]. Forest Research, 2021, 34(6):65-72. DOI:10.13275/j.cnki.lykxyj.2021.06.008.
[18]
QIN Y, WU B, LEI X, et al. Prediction of tree crown width in natural mixed forests using deep learning algorithm[J]. Forest Ecosystems, 2023, 10:100109. DOI:10.1016/j.fecs.2023.100109.
[19]
符利勇, 孙华. 基于混合效应模型的杉木单木冠幅预测模型[J]. 林业科学, 2013, 49(8):65-74.
FU L Y, SUN H. Individual crown diameter prediction for Cunninghamia lanceolata forests based on mixed effects models[J]. Scientia Silvae Sinicae, 2013, 49(8):65-74. DOI:10.11707/j.1001-7488.20130810.
[20]
ALI A. Forest stand structure and functioning:current knowledge and future challenges[J]. Ecological Indicators, 2019, 98:665-677. DOI:10.1016/j.ecolind.2018.11.017.
[21]
VOSPERNIK S. Basal area increment models accounting for climate and mixture for Austrian tree species[J]. Forest Ecology and Management, 2021, 480:118725. DOI:10.1016/j.foreco.2020.118725.
[22]
OWEN H J F, FLYNN W R M, LINES E R. Competitive drivers of interspecific deviations of crown morphology from theoretical predictions measured with Terrestrial Laser Scanning[J]. Journal of Ecology, 2021, 109(7):2612-2628. DOI:10.1111/1365-2745.13670.
[23]
LI Q C, LIU Z L, JIN G Z. Impacts of stand density on tree crown structure and biomass:a global meta-analysis[J]. Agricultural and Forest Meteorology, 2022, 326:109181. DOI:10.1016/j.agrformet.2022.109181.
[24]
MOOLAYIL J. Learn keras for deep neural networks: a fast-track approach to modern deep learning with python[M]. Berkeley CA: Apress, 2019.
[25]
RUDER S. An overview of gradient descent optimization algorithms[EB/OL]. arXiv, 2016:1609.04747. https://arxiv.org/abs/1609.04747.
[26]
SRIVASTAVA N, HINTON G, KRIZHEVSKY A, et al. Dropout:a simple way to prevent neural networks from overfitting[J]. Journal of Machine Learning Research, 2014, 15(1):1929-1958. DOI:10.5555/2627435.2670313.
[27]
HOSAIN M T, JIM J R, MRIDHA M F, et al. Explainable AIapproaches in deep learning:advancements,applications and challenges[J]. Computers and Electrical Engineering, 2024, 117:109246. DOI:10.1016/j.compeleceng.2024.109246.
[28]
ANTWARG L, MILLER R M, SHAPIRA B, et al. Explaining anomalies detected by autoencoders using Shapley Additive Explanations[J]. Expert Systems with Applications, 2021, 186:115736. DOI:10.1016/j.eswa.2021.115736.
[29]
JADERBERG M, DALIBARD V, OSINDERO S, et al. Population based training of neural networks[EB/OL]. arXiv, 2017:1711.09846. https://arxiv.org/abs/1711.09846.
[30]
ALI A., YAN E R, CHEN H Y H, et al. Stand structural diversity rather than species diversity enhances aboveground carbon storage in secondary subtropical forests in Eastern China[J]. Biogeosciences, 2016, 13(16):4627-4635. DOI:10.5194/bg-13-4627-2016.
[31]
SCHRÖTER M, HÄRDTLE W, VON OHEIMB G. Crown plasticity and neighborhood interactions of European beech (Fagus sylvatica L.) in an old-growth forest[J]. European Journal of Forest Research, 2012, 131(3):787-798. DOI:10.1007/s10342-011-0552-y.
[32]
BAYAT M, BETTINGER P, HEIDARI S, et al. Estimation of tree heights in an uneven-aged,mixed forest in northern Iran using artificial intelligence and empirical models[J]. Forests, 2020, 11(3):324. DOI:10.3390/f11030324.
PDF(6852 KB)

Accesses

Citation

Detail

Sections
Recommended
The full text is translated into English by AI, aiming to facilitate reading and comprehension. The core content is subject to the explanation in Chinese.

/