Plant regeneration through somatic embryogenesis in Tilia cordata

LI Yin, YU Sinong, YAN Lingjun, WANG Huanli, TANG Shijie

JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2025, Vol. 49 ›› Issue (4) : 79-87.

PDF(19887 KB)
PDF(19887 KB)
JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2025, Vol. 49 ›› Issue (4) : 79-87. DOI: 10.12302/j.issn.1000-2006.202411019

Plant regeneration through somatic embryogenesis in Tilia cordata

Author information +
History +

Abstract

【Objective】This study aims to develop a complete somatic embryogenesis system for Tilia cordata by systematically optimizing the culture medium composition to identify optimal conditions for somatic embryo induction and subsequent plant regeneration.【Method】Immature zygotic embryos of T. cordata were used as explants. The effects of different concentrations and combinations of plant growth regulators 2,4-dichlorophenoxyacetic acid(2,4-D and 6-benzylaminopurine(6-BA) on callus induction, proliferation, and somatic embryo induction efficiency were systematically investigated. Additionally, the impacts of different basal media, indole-3-butyric acid(IBA) concentrations, and activated charcoal supplementation on somatic embryo germination and plant regeneration were evaluated.【Result】Optimal callus induction was achieved at a concentration of 3.0 mg/L 2,4-D combined with 0.2 mg/L 6-BA, yielding an induction efficiency of 64.25%. Subsequent proliferation of embryogenic callus demonstrated maximal growth potential under identical hormonal conditions (3.0 mg/L 2,4-D+0.2 mg/L 6-BA), as evidenced by an exceptional proliferation coefficient of 1 063.72%. For somatic embryo induction, the same hormonal formulation (3.0 mg/L 2,4-D+0.2 mg/L 6-BA) proved most effective, generating somatic embryos at a frequency of 46.41%. Complete plant regeneration was successfully accomplished through transfering of developed somatic embryos to MS basal medium supplemented with 0.5 mg/L IBA in the absence of activated charcoal, with all regenerated plants exhibiting normal morphological characteristics.【Conclusion】In this study, a complete somatic embryogenesis system of T. cordata was initially established, providing a basis for subsequent establishment of an efficient propagation and genetic transformation system for Tilia.

Key words

Tilia cordata / embryogenic callus / somatic embryo / somatic embryo regeneration

Cite this article

Download Citations
LI Yin , YU Sinong , YAN Lingjun , et al . Plant regeneration through somatic embryogenesis in Tilia cordata[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2025, 49(4): 79-87 https://doi.org/10.12302/j.issn.1000-2006.202411019

References

[1]
王群. 椴属品种引种试验及实生苗多性状变异分析[D]. 泰安: 山东农业大学, 2021.
WANG Q. The cultivar introduction and analysis of multi-traits variation of seedling in Tilia[D]. Tai’an: Shandong Agricultural University, 2021.DOI: 10.27277/d.cnki.gsdnu.2021.000557.
[2]
NEGRI G, SANTI D, TABACH R. Flavonol glycosides found in hydroethanolic extracts from Tilia cordata,a species utilized as anxiolytics[J]. Revista Brasileira de Plantas Medicinais, 2013, 15(2):217-224.DOI: 10.1590/s1516-05722013000200008.
[3]
许世达, 王立, 吴莹, 等. 低温层积对3种椴树属植物种子活性氧含量和抗氧化酶活性的影响[J]. 植物资源与环境学报, 2022, 31(6):84-86.
XU S D, WANG L, WU Y, et al. Effect of low temperature stratification on reactive oxygen species content and antioxidant enzyme activities in seeds of three species of Tilia Linn[J]. Journal of Plant Resources and Environment, 2022, 31(6):84-86.
[4]
李增强, 朱晓兵, 邢广萍, 等. 欧洲小叶椴‘绿塔’嫁接繁殖技术研究[J]. 山东林业科技, 2022, 52(6):59-62.
LI Z Q, ZHU X B, XING G P, et al. Study on grafting propagation technology of Tilia amurensis ‘Green Tower’[J]. Journal of Shandong Forestry Science and Technology, 2022, 52(6):59-62.DOI: 10.3969/j.issn.1002-2724.2022.06.011.
[5]
SU Y H, ZHAO X Y, LIU Y B, et al. Auxin-induced WUS expression is essential for embryonic stem cell renewal during somatic embryogenesis in Arabidopsis[J]. The Plant Journal, 2009, 59(3): 448-460. DOI: 10.1111/j.1365-313X.2009.03880.x.
[6]
ASGHAR S, GHORI N, HYAT F, et al. Use ofauxin and cytokinin for somatic embryogenesis in plant: a story from competence towards completion[J]. Plant Growth Regulation, 2022, 99(3): 413-428. DOI: 10.1007/s10725-022-00923-9.
[7]
郭玉琼, 黄道斌, 常笑君, 等. 铁观音茶树体胚发生及其内源激素变化[J]. 应用与环境生物学报, 2018, 24(4):824-832.
GUO Y Q, HUANG D B, CHANG X J, et al. Somatic embryogenesis and the changes of endogenous hormones in Camellia sinensis ‘Tieguanyin’[J]. Chinese Journal of Applied and Environmental Biology, 2018, 24(4):824-832.DOI: 10.19675/j.cnki.1006-687x.2017.12027.
[8]
SINGLA B, TYAGI A K, KHURANA J P, et al. Analysis of expression profile of selected genes expressed during auxin-induced somatic embryogenesis in leaf base system of wheat (Triticum aestivum) and their possible interactions[J]. Plant Molecular Biology, 2007, 65(5):677-692.DOI: 10.1007/s11103-007-9234-z.
[9]
SIVILAY P, CHOI Y E. Somatic embryogenesis from the thin cell layer cultures of zygotic and somatic embryos of Aesculus hippocastanum[J]. In Vitro Cellular & Developmental Biology-Plant, 2024, 60(1):67-74.DOI: 10.1007/s11627-023-10396-8.
[10]
IKEDA-IWAI M, UMEHARA M, SATOH S, et al. Stress-induced somatic embryogenesis in vegetative tissues of Arabidopsis thaliana[J]. The Plant Journal, 2003, 34(1):107-114.DOI: 10.1046/j.1365-313X.2003.01702.x.
[11]
张婉, 任跃, 朱景乐, 等. 塔形栓皮栎体胚增殖与成熟的影响因素[J]. 中南林业科技大学学报, 2024, 44(4):58-65.
ZHANG W, REN Y, ZHU J L, et al. Embryo proliferation and maturation culture of Quercus variabilis Blume var. pyramidalis[J]. Journal of Central South University of Forestry & Technology, 2024, 44(4):58-65.DOI: 10.14067/j.cnki.1673-923x.2024.04.007.
[12]
MARUYAMA E, HOSOI Y, ISHII K. Somatic embryo production and plant regeneration of Japanese black pine (Pinus thunbergii)[J]. Journal of Forest Research, 2005, 10(5):403-407.DOI: 10.1007/s10310-005-0159-6.
[13]
KIM T D, CHOI Y E, LEE B S, et al. Micropropagation of Tilia amurensis via repetitive secondary somatic embryogenesis[J]. Journal of Plant Biotechnology, 2006, 33(4):243-248.DOI: 10.5010/jpb.2006.33.4.243.
[14]
CHALUPA V. Plant regeneration by somatic embryogenesis from cultured immature embryos of oak (Querem robur L.) and linden (Tilia cordata Mill.)[J]. Plant Cell Reports, 1990, 9(7):398-401.DOI: 10.1007/BF00232408.
[15]
KÄRKÖNEN A, SIMOLA L K. Localization of cytokinins in somatic and zygotic embryos of Tilia cordata using immunocytochemistry[J]. Physiologia Plantarum, 1999, 105(2):355-365.DOI: 10.1034/j.1399-3054.1999.105222.x.
[16]
KÄRKÖNEN A. Anatomical study of zygotic and somatic embryos of Tilia cordata[J]. Plant Cell,Tissue and Organ Culture, 2000, 61(3):205-214.DOI: 10.1023/A:1006455603528.
[17]
黄犀, 王欢利, 严灵君, 等. 南京椴胚性愈伤组织的诱导[J]. 江苏林业科技, 2020, 47(5):18-21.
HUANG X, WANG H L, YAN L J, et al. Induction of embryogenic callus of Tilia nanjing[J]. Journal of Jiangsu Forestry Science & Technology, 2020, 47(5):18-21.DOI: 10.3969/j.issn.1001-7380.2020.05.004.
[18]
王佳慧, 徐伟荣, 郑巧玲, 等. ‘赤霞珠’葡萄未成熟合子胚的体细胞胚发生研究[J]. 植物生理学报, 2023, 59(1):67-77.
WANG J H, XU W R, ZHENG Q L, et al. Somatic embryogenesis in immature zygotic embryos of Vitis vinifera ‘Cabernet Sauvignon’[J]. Plant Physiology Journal, 2023, 59(1):67-77.DOI: 10.13592/j.cnki.ppj.100439.
[19]
JING R Y, WANG P L, HUANG Z, et al. Histocytological study of somatic embryogenesis in the tree Cinnamomum camphora L.(Lauraceae)[J]. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 2019, 47(4):1348-1358.DOI: 10.15835/nbha47411655.
[20]
王果, 刘耀婷, 高兆银, 等. 荔枝愈伤组织继代及体胚发生过程中结构与多胺含量的变化[J]. 果树学报, 2021, 38(11):1911-1920.
WANG G, LIU Y T, GAO Z Y, et al. Changes in structure and polyamine metabolism of Litchi callus during subculture and somatic embryo development[J]. Journal of Fruit Science, 2021, 38(11):1911-1920.DOI: 10.13925/j.cnki.gsxb.20210107.
[21]
何丽君, 于卓. 濒危植物四合木(Tetraena mongolica Maxim)的离体培养组织学观察及再生植株的研究[J]. 内蒙古农业大学学报(自然科学版), 2003, 24(2):27-32.
HE L J, YU Z. Study on plant regeneration from explant culture and hislogical observation in rare endangered plant Tetraena mongolica maxim[J]. Journal of Inner Mongolia Institute of Agriculture and Animal Husbandry, 2003, 24(2):27-32.
[22]
吴健, 王鸿昌, 罗弦, 等. 唐菖蒲体细胞胚起源、发育的形态与组织细胞学观察[J]. 园艺学报, 2012, 39(12):2413-2420.
WU J, WANG H C, LUO X, et al. Morphological and histological observation of somatic embryogenesis in Gladiolus hybridus[J]. Acta Horticulturae Sinica, 2012, 39(12):2413-2420.DOI: 10.16420/j.issn.0513-353x.2012.12.010.
[23]
翟晓巧, 翟翠娟, 刘新凤. 木本植物体细胞胚胎发生及植株再生研究现状[J]. 河南林业科技, 2004, 24(2):7-10.
ZHAI X Q, ZHAI C J, LIU X F. The present research of somatic embryogenesies and plantlet regeneration of the wood plant[J]. Journal of Henan Forestry Science and Technology, 2004, 24(2):7-10.DOI: 10.3969/j.issn.1003-2630.2004.02.004.
[24]
臧国忠, 陈尚武, 张文, 等. 文冠果子叶同步胚的高效诱导及植株再生[J]. 西北林学院学报, 2008, 23(5):91-94.
ZANG G Z, CHEN S W, ZHANG W, et al. Synchronical somatic embryogenesis and plant regeneration of Xanthoceras sorbifolia[J]. Journal of Northwest Forestry University, 2008, 23(5):91-94.
[25]
梁雪莲, 陈晓玲, CHEAH K, 等. 从菠萝薄细胞层切片直接诱导体细胞胚[J]. 园艺学报, 2009, 36(11):1597-1602.
LIANG X L, CHEN X L, CHEAH K, et al. Establishment of direct somatic embryogenesis system through transverse thin cell layer culture in pineapple (Ananas comosus L. Merrill)[J]. Acta Horticulturae Sinica, 2009, 36(11):1597-1602.DOI: 10.16420/j.issn.0513-353x.2009.11.007.
[26]
CALISKAN M, TURET M, CUMING A C. Formation of wheat (Triticum aestivum L.) embryogenic callus involves peroxide-generating germin-like oxalate oxidase[J]. Planta, 2004, 219(1):132-140.DOI: 10.1007/s00425-003-1199-9.
[27]
DA SILVA MESSIAS T, REZENDE R K S, DA SILVA L F, et al. Somatic embryogenesis induction in leaf and root explants of Allophylus edulis (A.St.-hil.,cambess. and A.juss.) radlk[J]. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 2019, 47(4):1081-1086.DOI: 10.15835/nbha47411504.
[28]
刘静, 袁婷, 倪细炉, 等. ‘宁杞8号’体细胞胚胎发生体系建立[J]. 广西植物, 2018, 38(9):1183-1190.
LIU J, YUAN T, NI X L, et al. Establishment of somatic embryogenesis system of Lycium barbarum ‘Ningqi 8’[J]. Guihaia, 2018, 38(9):1183-1190.
[29]
LI F F, LI X Y, QIAO M, et al. TaTCP-1,a novel regeneration-related gene involved in the molecular regulation of somatic embryogenesis in wheat (Triticum aestivum L.)[J]. Frontiers in Plant Science, 2020,11:1004.DOI: 10.3389/fpls.2020.01004.
[30]
崔凯荣, 邢更生, 周功克, 等. 植物激素对体细胞胚胎发生的诱导与调节[J]. 遗传, 2000, 22(5):349-354.
CUI K R, XING G S, ZHOU G K, et al. The induced and regulatory effects of plant hormones in somatic embryogenesis[J]. Hereditas, 2000, 22(5):349-354.DOI: 10.16288/j.yczz.2000.05.024.
[31]
VOOKOVÁ B, KORMUTÁK A. Effect of sucrose concentration,charcoal,and indole-3-butyric acid on germination of Abies numidica somatic embryos[J]. Biologia Plantarum, 2001, 44(2):181-184.DOI: 10.1023/a:1010278704613.
[32]
翟彦, 张宗勤, 贾敏, 等. 百合体细胞胚胎发生和植株再生[J]. 西北植物学报, 2011, 31(4):834-841.
ZHAI Y, ZHANG Z Q, JIA M, et al. Plant regeneration and somatic embryogenesis of Lilium spp[J]. Acta Botanica Boreali-Occidentalia Sinica, 2011, 31(4):834-841.
[33]
何荣荣, 张雅丽, 崔邵艳, 等. 不同因素对葡萄次生胚诱导的影响[J]. 农业生物技术学报, 2009, 17(6):1123-1124.
HE R R, ZHANG Y L, CUI S Y, et al. Effect of different factors on the induction of the secondary somatic embryo of Vitis vinifera[J]. Journal of Agricultural Biotechnology, 2009, 17(6):1123-1124.
PDF(19887 KB)

Accesses

Citation

Detail

Sections
Recommended
The full text is translated into English by AI, aiming to facilitate reading and comprehension. The core content is subject to the explanation in Chinese.

/