Advances in single-cell sequencing technology and application prospects in somatic embryogenesis of plants

WENG Yuhao, CHEN Xinying, WEN Ye, HAO Zhaodong, SHI Jisen, CHEN Jinhui

Journal of Nanjing Forestry University (Natural Sciences Edition) ›› 2026, Vol. 50 ›› Issue (1) : 1-11.

PDF(1479 KB)
PDF(1479 KB)
Journal of Nanjing Forestry University (Natural Sciences Edition) ›› 2026, Vol. 50 ›› Issue (1) : 1-11. DOI: 10.12302/j.issn.1000-2006.202412035

Advances in single-cell sequencing technology and application prospects in somatic embryogenesis of plants

Author information +
History +

Abstract

Somatic embryogenesis (SE), a manifestation of plant cellular totipotency, holds significant application value in plant germplasm resource conservation, elite tree breeding and industrial utilization, cultivar and gene-editing applications. However, substantial variations in embryogenic capacity exist among tree species, coupled with the absence of universally applicable protocols, highlighting an urgent need to improve dedifferentiation efficiency and somatic embryo induction rates. Elucidating the molecular mechanisms underlying somatic embryogenesis is essential for further enhancing embryogenesis efficiency, optimizing somatic embryo induction systems, and expanding industrial production. Single-cell sequencing (scRNA-seq) has emerged as a transformative tool for dissecting transcriptional heterogeneity, epigenetic dynamics, and cell fate transitions at single-cell resolution, offering novel insights into the regulatory networks underlying SE. However, the application of scRNA-seq in woody species is constrained by lignified cell walls, vascular complexity, and limited species-specific databases. This review systematically outlines the technological evolution of scRNA-seq, strategies for preparing woody plant tissues (e.g., protoplast isolation, nuclei extraction), and bioinformatic workflows for data analysis. By integrating case studies in Dimocarpus longan and Cocos nucifera, we highlight the utility of scRNA-seq in reconstructing developmental trajectories, unraveling hormone signaling crosstalk, and enabling multi-omics integration during SE. For instance, in D. longan, scRNA-seq revealed 12 cell clusters in embryogenic callus, with pseudotime analysis identifying histone deacetylation as a key regulator of early embryogenesis. Similarly, coconut studies demonstrated distinct transcriptional landscapes among zygotic embryos, callus, and somatic embryos, pinpointing CnGRF12 as a critical transcription factor in cell fate determination. Challenges in woody plant scRNA-seq include spatial information loss during cell dissociation, technical noise from protoplast preparation, and the scarcity of cross-species marker gene databases. To address these, we propose strategies such as combining snRNA-seq with spatial transcriptomics, optimizing enzymatic digestion protocols, and establishing unified annotation frameworks. Furthermore, advancements in multi-omics platforms (e.g., scATAC-seq, CITE-seq) and computational tools (e.g., Monocle for trajectory inference) are discussed as avenues to enhance resolution and biological relevance. Future directions emphasize the need for large-scale single-cell atlases, standardized protocols for recalcitrant species, and collaborative databases to bridge knowledge gaps between model and non-model plants. By leveraging these advancements, scRNA-seq holds immense potential to accelerate mechanistic studies of SE, optimize regeneration systems, and advance precision breeding in forestry.

Key words

tree / single-cell sequencing (scRNA-seq) / somatic embryogenesis / cell fate transitions / hormone response mechanisms / multi-omics systems

Cite this article

Download Citations
WENG Yuhao , CHEN Xinying , WEN Ye , et al . Advances in single-cell sequencing technology and application prospects in somatic embryogenesis of plants[J]. Journal of Nanjing Forestry University (Natural Sciences Edition). 2026, 50(1): 1-11 https://doi.org/10.12302/j.issn.1000-2006.202412035

References

[1]
CORREDOIRA E, MERKLE S A, MARTINEZ M T, et al. Non-zygotic embryogenesis in hardwood species[J]. Critical Reviews in Plant Sciences, 2019, 38(1):29-97.DOI: 10.1080/07352689.2018.1551122.
[2]
YANG X Y, ZHANG X L. Regulation of somatic embryogenesis in higher plants[J]. Critical Reviews in Plant Sciences, 2010, 29(1):36-57.DOI: 10.1080/07352680903436291.
[3]
STARK R, GRZELAK M, HADFIELD J. RNA sequencing:the teenage years[J]. Nature Reviews.Genetics, 2019, 20(11):631-656.DOI: 10.1038/s41576-019-0150-2.
[4]
HORSTMAN A, BEMER M, BOUTILIER K. A transcriptional view on somatic embryogenesis[J]. Regeneration, 2017, 4(4):201-216.DOI: 10.1002/reg2.91.
[5]
VAN DER GRAAFF E, LAUX T, RENSING S A. The WUS homeobox-containing (WOX) protein family[J]. Genome Biology, 2009, 10(12):248.DOI: 10.1186/gb-2009-10-12-248.
[6]
SCHOOF H, LENHARD M, HAECKER A, et al. The stem cell population of Arabidopsis shoot meristems is maintained by a regulatory loop between the CLAVATA and WUSCHEL genes[J]. Cell, 2000, 100(6):635-644.DOI: 10.1016/S0092-8674(00)80700-X.
[7]
MA Y F, MIOTK A, ŠUTIKOVIC Z, et al. WUSCHEL acts as an auxin response rheostat to maintain apical stem cells in Arabidopsis[J]. Nature Communications, 2019, 10:5093.DOI: 10.1038/s41467-019-13074-9.
[8]
MÁRQUEZ-LÓPEZ R E, PÉREZ-HERNÁNDEZ C, KU-GONZÁLEZ Á, et al. Localization and transport of indole-3-acetic acid during somatic embryogenesis in Coffea canephora[J]. Protoplasma, 2018, 255(2):695-708.DOI: 10.1007/s00709-017-1181-1.
[9]
SU Y H, ZHAO X Y, LIU Y B, et al. Auxin-induced WUS expression is essential for embryonic stem cell renewal during somatic embryogenesis in Arabidopsis[J]. The Plant Journal, 2009, 59(3):448-460.DOI: 10.1111/j.1365-313X.2009.03880.x.
[10]
MOUBAYIDIN L, DI MAMBRO R, SABATINI S. Cytokinin-auxin crosstalk[J]. Trends in Plant Science, 2009, 14(10):557-562.DOI: 10.1016/j.tplants.2009.06.010.
[11]
SU Y H, LIU Y B, BAI B, et al. Establishment of embryonic shoot-root axis is involved in auxin and cytokinin response during Arabidopsis somatic embryogenesis[J]. Frontiers in Plant Science, 2015, 5:792.DOI: 10.3389/fpls.2014.00792.
[12]
LEIBFRIED A, TO J P C, BUSCH W, et al. WUSCHEL controls meristem function by direct regulation of cytokinin-inducible response regulators[J]. Nature, 2005, 438(7071):1172-1175.DOI: 10.1038/nature04270.
[13]
IWASE A, MITSUDA N, KOYAMA T, et al. The AP2/ERF transcription factor WIND1 controls cell dedifferentiation in Arabidopsis[J]. Current Biology, 2011, 21(6):508-514.DOI: 10.1016/j.cub.2011.02.020.
[14]
XIAO W Y, CUSTARD K D, BROWN R C, et al. DNA methylation is critical for Arabidopsis embryogenesis and seed viability[J]. The Plant Cell, 2006, 18(4):805-814.DOI: 10.1105/tpc.105.038836.
[15]
NOCEDA C, SALAJ T, PÉREZ M, et al. DNA demethylation and decrease on free polyamines is associated with the embryogenic capacity of Pinus nigra Arn.cell culture[J]. Trees, 2009, 23(6):1285-1293.DOI: 10.1007/s00468-009-0370-8.
[16]
PFLUGER J, WAGNER D. Histone modifications and dynamic regulation of genome accessibility in plants[J]. Current Opinion in Plant Biology, 2007, 10(6):645-652.DOI: 10.1016/j.pbi.2007.07.013.
[17]
任衍钢, 白冠军, 宋玉奇, 等. 表观遗传学的起源与发展[J]. 生物学通报, 2016, 51(3):57-61.
REN Y G, BAI G J, SONG Y Q, et al. The origin and development of epigenetics[J]. Bulletin of Biology, 2016, 51(3):57-61.
[18]
FEHÉR A. Somatic embryogenesis:Stress-induced remodeling of plant cell fate[J]. Biochimica et Biophysica Acta (BBA)-Gene Regulatory Mechanisms, 2015, 1849(4):385-402.DOI: 10.1016/j.bbagrm.2014.07.005.
[19]
WANG F X, SHANG G D, WU L Y, et al. Chromatin accessibility dynamics and a hierarchical transcriptional regulatory network structure for plant somatic embryogenesis[J]. Developmental Cell, 2020, 54(6):742-757.DOI: 10.1016/j.devcel.2020.07.003.
[20]
LI S B, XIE Z Z, HU C G, et al. A review of auxin response factors (ARFs) in plants[J]. Frontiers in Plant Science, 2016, 7:47.DOI: 10.3389/fpls.2016.00047.
[21]
任敬敬. 龙眼体胚发生过程中谷胱甘肽代谢相关基因的克隆及其表达分析[D]. 福州: 福建农林大学, 2013.
REN J J. Studies on cloning of the genes encoding some enzymes related to glutathione metabolism and their expression during somatic embryogenesis in Dimocarpus longan lour[D]. Fuzhou: Fujian Agriculture and Forestry University, 2013.
[22]
BELMONTE M F, DONALD G, REID D M, et al. Alterations of the glutathione redox state improve apical meristem structure and somatic embryo quality in white spruce (Picea glauca)[J]. Journal of Experimental Botany, 2005, 56(419):2355-2364.DOI: 10.1093/jxb/eri228.
[23]
DO NASCIMENTO V L, SANTA-CATARINA C, DE FREITAS F H P, et al. Glutathione improves early somatic embryogenesis in Araucaria angustifolia (Bert) O.Kuntze by alteration in nitric oxide emission[J]. Plant Science, 2012, 195:80-87.DOI: 10.1016/j.plantsci.2012.06.011.
[24]
DE FREITAS F H P, DO NASCIMENTO V L, PUTTKAMMER C C, et al. Glutathione and abscisic acid supplementation influences somatic embryo maturation and hormone endogenous levels during somatic embryogenesis in Podocarpus lambertii Klotzsch ex Endl[J]. Plant Science, 2016, 253:98-106.DOI: 10.1016/j.plantsci.2016.09.012.
[25]
KUDELKO K, GAJ M D. Glutathione (GSH) induces embryogenic response in in vitro cultured explants of Arabidopsis thaliana via auxin-related mechanism[J]. Plant Growth Regulation, 2019, 89(1):25-36.DOI: 10.1007/s10725-019-00514-1.
[26]
LONG J M, LIU C Y, FENG M Q, et al. miR156-SPL modules regulate induction of somatic embryogenesis in Citrus callus[J]. Journal of Experimental Botany, 2018, 69(12):2979-2993.DOI: 10.1093/jxb/ery132.
[27]
WÓJCIK A M, NODINE M D, GAJ M D. miR160 and miR166/165 contribute to the LEC2-mediated auxin response involved in the somatic embryogenesis induction in Arabidopsis[J]. Frontiers in Plant Science, 2017, 8:2024.DOI: 10.3389/fpls.2017.02024.
[28]
习洋, 孙宇涵, 李云. 林木体细胞胚发生研究进展[J]. 保定学院学报, 2020, 33(3):122-130.
XI Y, SUN Y H, LI Y. Development of somatic embryogenesis in forests trees[J]. Journal of Baoding University, 2020, 33(3):122-130.DOI: 10.13747/j.cnki.bdxyxb.2020.03.020.
[29]
陈金慧, 施季森, 赵治芬, 等. 杂交鹅掌楸体胚系统的遗传稳定性研究[J]. 南京林业大学学报(自然科学版), 2006, 30(6):99-101.
CHEN J H, SHI J S, ZHAO Z F, et al. Studies on the genetic stability of embryogenic cellular lines of Liriodendron hybrids[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2006, 30(6):99-101.DOI: 10.3969/j.jssn.1000-2006.2006.06.023.
[30]
齐力旺, 韩一凡, 李玲, 等. 华北落叶松体细胞胚胎发生及遗传转化实验系统的建立(简报)[J]. 实验生物学报, 2000, 33(4):357-365.
QI L W, HAN Y F, LI L, et al. The somatic embryogenesis and establishment of transformation experiment system in Larix principis-rupprechtii[J]. Acta Biologiae Experimentalis Sinica, 2000, 33(4):357-365.
[31]
LELU-WALTER M A, THOMPSON D, HARVENGT L, et al. Somatic embryogenesis in forestry with a focus on Europe:state-of-the-art,benefits,challenges and future direction[J]. Tree Genetics & Genomes, 2013, 9(4):883-899.DOI: 10.1007/s11295-013-0620-1.
[32]
ZHU T Q, WANG J H, HU J W, et al. Mini review:application of the somatic embryogenesis technique in conifer species[J]. Forestry Research, 2022, 2:18.DOI: 10.48130/FR-2022-0018.
[33]
邓秀新. 中国柑橘育种60年回顾与展望[J]. 园艺学报, 2022, 49(10):2063-2074.
DENG X X. A review and perspective for Citrus breeding in China during the last six decades[J]. Acta Horticulturae Sinica, 2022, 49(10):2063-2074.DOI: 10.16420/j.issn.0513-353x.2021-0701.
[34]
齐帅征. 杂交枫香体胚发生体系优化及其机理研究[D]. 北京: 北京林业大学, 2022.DOI: 10.26949/d.cnki.gblyu.2022.001247.
QI S Z. Optimization and mechanism study of somatic embryogenesis system in hybrid sweetgum[D]. Beijing: Beijing Forestry University, 2022.DOI: 10.26949/d.cnki.gblyu.2022.001247.
[35]
SU W B, XU M Y, RADANI Y, et al. Technological development and application of plant genetic transformation[J]. International Journal of Molecular Sciences, 2023, 24(13):10646.DOI: 10.3390/ijms241310646.
[36]
LI M P, WANG D, LONG X F, et al. Agrobacterium-mediated genetic transformation of embryogenic callus in a Liriodendron hybrid (L.chinense × L.tulipifera)[J]. Frontiers in Plant Science, 2022, 13:802128.DOI: 10.3389/fpls.2022.802128.
[37]
QU H X, LIANG S, HU L F, et al. Overexpression of Liriodendron hybrid LhGLK1 in Arabidopsis leads to excessive chlorophyll synthesis and improved growth[J]. International Journal of Molecular Sciences, 2024, 25(13):6968.DOI: 10.3390/ijms25136968.
[38]
CHEN X Y, LIU Y, LU L, et al. Establishment of a glucocorticoid inducible system for regulating somatic embryogenesis in Liriodendron hybrids[J]. Forestry Research, 2024, 4:e006.DOI: 10.48130/forres-0024-0003.
[39]
LONG X F, ZHANG J J, WANG D D, et al. Expression dynamics of WOX homeodomain transcription factors during somatic embryogenesis in Liriodendron hybrids[J]. Forestry Research, 2023, 3:15.DOI: 10.48130/FR-2023-0015.
[40]
MARTÍNEZ M T, CORREDOIRA E. Efficient procedure for induction somatic embryogenesis in holm oak:roles of explant type,auxin type,and exposure duration to auxin[J]. Forests, 2023, 14(2):430.DOI: 10.3390/f14020430.
[41]
BORTHAKUR D, BUSOV V, CAO X H, et al. Current status and trends in forest genomics[J]. Forestry Research, 2022, 2(11): 1-22.DOI:10.48130/FR-2022-0011.
[42]
KURIMOTO K, YABUTA Y, OHINATA Y, et al. An improved single-cell cDNA amplification method for efficient high-density oligonucleotide microarray analysis[J]. Nucleic acids research, 2006, 34(5): e42.DOI:10.1093/nar/gkl050.
[43]
ISLAM S, KJÄLLQUIST U, MOLINER A, et al. Characterization of the single-cell transcriptional landscape by highly multiplex RNA-seq[J]. Genome research, 2011, 21(7): 1160-1167.DOI:10.1101/gr.110882.110.
[44]
RAMSKÖLD D, LUO S, WANG Y C, et al. Full-length mRNA-Seq from single-cell levels of RNA and individual circulating tumor cells[J]. Nature Biotechnology, 2012, 30(8): 777-782.DOI:10.1038/nbt.2282.
[45]
WANG X L, HE Y, ZHANG Q M, et al. Direct comparative analyses of 10X genomics chromium and smart-seq2[J]. Genomics,Proteomics & Bioinformatics, 2021, 19(2):253-266. DOI:10.1016/j.gpb.2020.02.005.
[46]
JAITIN D A, KENIGSBERG E, KEREN-SHAUL H, et al. Massively parallel single-cell RNA-seq for marker-free decomposition of tissues into cell types[J]. Science, 2014, 343(6172):776-779.DOI: 10.1126/science.1247651.
[47]
ISLAM S, ZEISEL A, JOOST S, et al. Quantitative single-cell RNA-seq with unique molecular identifiers[J]. Nature Methods, 2013, 11(2):163-166.DOI: 10.1038/nmeth.2772.
[48]
MACOSKO E Z, BASU A, SATIJA R, et al. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets[J]. Cell, 2015, 161(5):1202-1214.DOI: 10.1016/j.cell.2015.05.002.
[49]
KLEIN A M, MAZUTIS L, AKARTUNA I, et al. Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells[J]. Cell, 2015, 161(5):1187-1201.DOI: 10.1016/j.cell.2015.04.044.
[50]
ZHENG G X Y, TERRY J M, BELGRADER P, et al. Massively parallel digital transcriptional profiling of single cells[J]. Nature Communications, 2017, 8:14049.DOI: 10.1038/ncomms14049.
[51]
ZHANG X N, LI T Q, LIU F, et al. Comparative analysis of droplet-based ultra-high-throughput single-cell RNA-seq systems[J]. Molecular Cell, 2019, 73(1):130-142.DOI: 10.1016/j.molcel.2018.10.020.
[52]
EFRONI I, MELLO A, NAWY T, et al. Root regeneration triggers an embryo-like sequence guided by hormonal interactions[J]. Cell, 2016, 165(7):1721-1733.DOI: 10.1016/j.cell.2016.04.046.
[53]
DENYER T, MA X L, KLESEN S, et al. Spatiotemporal developmental trajectories in the Arabidopsis root revealed using high-throughput single-cell RNA sequencing[J]. Developmental Cell, 2019, 48(6):840-852.DOI: 10.1016/j.devcel.2019.02.022.
[54]
RYU K H, HUANG L, KANG H M, et al. Single-cell RNA sequencing resolves molecular relationships among individual plant cells[J]. Plant Physiology, 2019, 179(4):1444-1456.DOI: 10.1104/pp.18.01482.
[55]
SHULSE C N, COLE B J, CIOBANU D, et al. High-throughput single-cell transcriptome profiling of plant cell types[J]. Cell Reports, 2019, 27(7): 2241-2247.DOI:10.1016/j.celrep.2019.04.054.
[56]
TURCO G M, RODRIGUEZ-MEDINA J, SIEBERT S, et al. Molecular mechanisms driving switch behavior in xylem cell differentiation[J]. Cell Reports, 2019, 28(2):342-351.DOI: 10.1016/j.celrep.2019.06.041.
[57]
ZHANG T Q, CHEN Y, WANG J W. A single-cell analysis of the Arabidopsis vegetative shoot apex[J]. Developmental Cell, 2021, 56(7):1056-1074.DOI: 10.1016/j.devcel.2021.02.021.
[58]
DORRITY M W, ALEXANDRE C M, HAMM M O, et al. The regulatory landscape of Arabidopsis thaliana roots at single-cell resolution[J]. Nature Communications, 2021, 12:3334.DOI: 10.1038/s41467-021-23675-y.
[59]
LIU Z X, ZHOU Y P, GUO J G, et al. Global dynamic molecular profiling of stomatal lineage cell development by single-cell RNA sequencing[J]. Molecular Plant, 2020, 13(8):1178-1193.DOI: 10.1016/j.molp.2020.06.010.
[60]
LIU Q, LIANG Z, FENG D, et al. Transcriptional landscape of rice roots at the single-cell resolution[J]. Molecular Plant, 2021, 14(3):384-394.DOI: 10.1016/j.molp.2020.12.014.
[61]
ZHANG T Q, CHEN Y, LIU Y, et al. Single-cell transcriptome atlas and chromatin accessibility landscape reveal differentiation trajectories in the rice root[J]. Nature Communications, 2021, 12:2053.DOI: 10.1038/s41467-021-22352-4.
[62]
WANG Y, HUAN Q, LI K, et al. Single-cell transcriptome atlas of the leaf and root of rice seedlings[J]. Journal of Genetics and Genomics, 2021, 48(10):881-898.DOI: 10.1016/j.jgg.2021.06.001.
[63]
BEZRUTCZYK M, ZÖLLNER N R, KRUSE C P S, et al. Evidence for phloem loading via the abaxial bundle sheath cells in maize leaves[J]. The Plant Cell, 2021, 33(3):531-547.DOI: 10.1093/plcell/koaa055.
[64]
SATTERLEE J W, STRABLE J, SCANLON M J. Plant stem-cell organization and differentiation at single-cell resolution[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(52):33689-33699.DOI: 10.1073/pnas.2018788117.
[65]
XU X S, CROW M, RICE B R, et al. Single-cell RNA sequencing of developing maize ears facilitates functional analysis and trait candidate gene discovery[J]. Developmental Cell, 2021, 56(4):557-568.e6.DOI: 10.1016/j.devcel.2020.12.015.
[66]
SUN G L, XIA M Z, LI J P, et al. The maize single-nucleus transcriptome comprehensively describes signaling networks governing movement and development of grass stomata[J]. The Plant Cell, 2022, 34(5):1890-1911.DOI: 10.1093/plcell/koac047.
[67]
LIU H, HU D X, DU P X, et al. Single-cell RNA-seq describes the transcriptome landscape and identifies critical transcription factors in the leaf blade of the allotetraploid peanut (Arachis hypogaea L.)[J]. Plant Biotechnology Journal, 2021, 19(11):2261-2276.DOI: 10.1111/pbi.13656.
[68]
TIAN C, DU Q, XU M, et al. Single-nucleus RNA-seq resolves spatiotemporal developmental trajectories in the tomato shoot apex[EB/OL]. BioRxiv (2020-09-20)[2024-12-01]. https://www.biorxiv.org/content/10.1101/2020.09.20.305029v1.DOI: 10.1101/2020.09.20.305029.
[69]
BAI Y B, LIU H, LYU H M, et al. Development of a single-cell atlas for woodland strawberry (Fragaria vesca) leaves during early Botrytis cinerea infection using single cell RNA-seq[J]. Horticulture Research, 2022, 9:uhab055.DOI: 10.1093/hr/uhab055.
[70]
SUN S J, SHEN X F, LI Y, et al. Single-cell RNA sequencing provides a high-resolution roadmap for understanding the multicellular compartmentation of specialized metabolism[J]. Nature Plants, 2022, 9(1):179-190.DOI: 10.1038/s41477-022-01291-y.
[71]
KANG M, CHOI Y, KIM H, et al. Single-cell RNA-sequencing of Nicotiana attenuata Corolla cells reveals the biosynthetic pathway of a floral scent[J]. New Phytologist, 2022, 234(2):527-544.DOI: 10.1111/nph.17992.
[72]
ZHANG S T, ZHU C, ZHANG X Y, et al. Single-cell RNA sequencing analysis of the embryogenic callus clarifies the spatiotemporal developmental trajectories of the early somatic embryo in Dimocarpus longan[J]. The Plant Journal, 2023, 115(5):1277-1297.DOI: 10.1111/tpj.16319.
[73]
CONDE D, TRIOZZI P M, PEREIRA W J, et al. Single-nuclei transcriptome analysis of the shoot apex vascular system differentiation in Populus[J]. Development, 2022, 149(21):dev200632.DOI: 10.1242/dev.200632.
[74]
LI H, DAI X R, HUANG X, et al. Single-cell RNA sequencing reveals a high-resolution cell atlas of xylem in Populus[J]. Journal of Integrative Plant Biology, 2021, 63(11):1906-1921.DOI: 10.1111/jipb.13159.
[75]
CHEN Y, TONG S F, JIANG Y Z, et al. Transcriptional landscape of highly lignified poplar stems at single-cell resolution[J]. Genome Biology, 2021, 22(1):319.DOI: 10.1186/s13059-021-02537-2.
[76]
FARMER A, THIBIVILLIERS S, RYU K H, et al. Single-nucleus RNA and ATAC sequencing reveals the impact of chromatin accessibility on gene expression in Arabidopsis roots at the single-cell level[J]. Molecular Plant, 2021, 14(3):372-383.DOI: 10.1016/j.molp.2021.01.001.
[77]
MCFARLANE H E, DÖRING A, PERSSON S. The cell biology of cellulose synthesis[J]. Annual Review of Plant Biology, 2014, 65:69-94.DOI: 10.1146/annurev-arplant-050213-040240.
[78]
ZHANG T Q, XU Z G, SHANG G D, et al. A single-cell RNA sequencing profiles the developmental landscape of Arabidopsis root[J]. Molecular Plant, 2019, 12(5):648-660.DOI: 10.1016/j.molp.2019.04.004.
[79]
LIN Y C, LI W, CHEN H, et al. A simple improved-throughput xylem protoplast system for studying wood formation[J]. Nature Protocols, 2014, 9(9):2194-2205.DOI: 10.1038/nprot.2014.147.
[80]
BRANDT S, KEHR J, WALZ C, et al. Technical Advance:A rapid method for detection of plant gene transcripts from single epidermal,mesophyll and companion cells of intact leaves[J]. The Plant Journal, 1999, 20(2):245-250.DOI: 10.1046/j.1365-313x.1999.00583.x.
[81]
LIECKFELDT E, SIMON-ROSIN U, KOSE F, et al. Gene expression profiling of single epidermal,basal and trichome cells of Arabidopsis thaliana[J]. Journal of Plant Physiology, 2008, 165(14):1530-1544.DOI: 10.1016/j.jplph.2007.06.017.
[82]
VAN DEN BRINK S C, SAGE F, VÉRTESY Á, et al. Single-cell sequencing reveals dissociation-induced gene expression in tissue subpopulations[J]. Nature Methods, 2017, 14(10):935-936.DOI: 10.1038/nmeth.4437.
[83]
CONDE D, TRIOZZI P M, BALMANT K M, et al. A robust method of nuclei isolation for single-cell RNA sequencing of solid tissues from the plant genus Populus[J]. PLoS One, 2021, 16(5):e0251149.DOI: 10.1371/journal.pone.0251149.
[84]
DENISENKO E, GUO B B, JONES M, et al. Systematic assessment of tissue dissociation and storage biases in single-cell and single-nucleus RNA-seq workflows[J]. Genome Biology, 2020, 21(1):130.DOI: 10.1186/s13059-020-02048-6.
[85]
NELSON T, TAUSTA S L, GANDOTRA N, et al. Laser microdissection of plant tissue:what you see is what you get[J]. Annual Review of Plant Biology, 2006, 57:181-201.DOI: 10.1146/annurev.arplant.56.032604.144138.
[86]
GALBRAITH D W. Flow cytometry and sorting in Arabidopsis[J]. Methods in Molecular Biology, 2014, 1062:509-537.DOI: 10.1007/978-1-62703-580-4_27.
[87]
OTERO S, GILDEA I, ROSZAK P, et al. A root phloem pole cell atlas reveals common transcriptional states in protophloema-djacent cells[J]. Nature Plants, 2022, 8(8):954-970.DOI: 10.1038/s41477-022-01178-y.
[88]
DELAUGHTER D M. The use of the fluidigm C1 for RNA expression analyses of single cells[J]. Current Protocols in Molecular Biology, 2018, 122(1):e55.DOI: 10.1002/cpmb.55.
[89]
LIU C, WU T, FAN F, et al. A portable and cost-effective microfluidic system for massively parallel single-cell transcriptome profiling[EB/OL]. BioRxiv ( 2019-11-27)[2024-12-01]. https://www.biorxiv.org/content/10.1101/818450v3.full. DOI:10.1101/818450.
[90]
FAN H C, FU G K, FODOR S P A. Expression profiling. combinatorial labeling of single cells for gene expression cytometry[J]. Science, 2015, 347(6222):1258367.DOI: 10.1126/science.1258367.
[91]
BIREY F, ANDERSEN J, MAKINSON C D, et al. Assembly of functionally integrated human forebrain spheroids[J]. Nature, 2017, 545(7652):54-59.DOI: 10.1038/nature22330.
[92]
SEYFFERTH C, RENEMA J, WENDRICH J R, et al. Advances and opportunities in single-cell transcriptomics for plant research[J]. Annual Review of Plant Biology, 2021, 72:847-866.DOI: 10.1146/annurev-arplant-081720-010120.
[93]
LOPEZ-ANIDO C B, VATÉN A, SMOOT N K, et al. Single-cell resolution of lineage trajectories in the Arabidopsis stomatal lineage and developing leaf[J]. Developmental Cell, 2021, 56(7):1043-1055.e4.DOI: 10.1016/j.devcel.2021.03.014.
[94]
KIM J Y, SYMEONIDI E, PANG T Y, et al. Distinct identities of leaf phloem cells revealed by single cell transcriptomics[J]. The Plant Cell, 2021, 33(3):511-530.DOI: 10.1093/plcell/koaa060.
[95]
ROSZAK P, HEO J-O, BLOB B, et al. Analysis of phloem trajectory links tissue maturation to cell specialization[EB/OL]. BioRxiv ( 2019-11-27)[2024-12-01]. https://www.biorxiv.org/content/10.1101/818450v3.full.DOI:10.1101/2021.01.18.427084.
[96]
SAELENS W, CANNOODT R, TODOROV H, et al. A comparison of single-cell trajectory inference methods[J]. Nature Biotechnology, 2019, 37(5):547-554.DOI: 10.1038/s41587-019-0071-9.
[97]
TRAPNELL C, CACCHIARELLI D, GRIMSBY J, et al. The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells[J]. Nature Biotechnology, 2014, 32(4):381-386.DOI: 10.1038/nbt.2859.
[98]
XU M X, DU Q W, TIAN C H, et al. Stochastic gene expression drives mesophyll protoplast regeneration[J]. Science Advances, 2021, 7(33):eabg8466.DOI: 10.1126/sciadv.abg8466.
[99]
BRENNECKE P, ANDERS S, KIM J K, et al. Accounting for technical noise in single-cell RNA-seq experiments[J]. Nature Methods, 2013, 10(11):1093-1095.DOI: 10.1038/nmeth.2645.
[100]
LI C, VIRGILIO M C, COLLINS K L, et al. Multi-omic single-cell velocity models epigenome-transcriptome interactions and improves cell fate prediction[J]. Nature Biotechnology, 2022, 41(3):387-398.DOI: 10.1038/s41587-022-01476-y.
[101]
SHAHAN R, HSU C W, NOLAN T M, et al. A single-cell Arabidopsis root atlas reveals developmental trajectories in wild-type and cell identity mutants[J]. Developmental Cell, 2022, 57(4):543-560.e9.DOI: 10.1016/j.devcel.2022.01.008.
[102]
HOU Z M, LIU Y H, ZHANG M, et al. High-throughput single-cell transcriptomics reveals the female germline differentiation trajectory in Arabidopsis thaliana[J]. Communications Biology, 2021, 4:1149.DOI: 10.1038/s42003-021-02676-z.
[103]
ZHAI N, XU L. Pluripotency acquisition in the middle cell layer of callus is required for organ regeneration[J]. Nature Plants, 2021, 7(11):1453-1460.DOI: 10.1038/s41477-021-01015-8.
[104]
GUO Y H, CHEN X L, LI J H, et al. Single-cell RNA sequencing reveals a high-resolution cell atlas of petals in Prunus mume at different flowering development stages[J]. Horticulture Research, 2024, 11(9):uhae189.DOI: 10.1093/hr/uhae189.
[105]
PALOVAARA J, SAIGA S, WEIJERS D. Transcriptomics approaches in the early Arabidopsis embryo[J]. Trends in Plant Science, 2013, 18(9):514-521.DOI: 10.1016/j.tplants.2013.04.011.
[106]
LIN S J, ZHANG Y W, ZHANG S P, et al. Root-specific theanine metabolism and regulation at the single-cell level in tea plants (Camellia sinensis)[J]. eLife, 2024,13:RP95891.DOI: 10.7554/eLife.95891.
[107]
ZHAO S Z, RONG J. Single-cell RNA-seq reveals a link of ovule abortion and sugar transport in Camellia oleifera[J]. Frontiers in Plant Science, 2024, 15:1274013.DOI: 10.3389/fpls.2024.1274013.
[108]
YU C N, HOU K L, ZHANG H S, et al. Integrated mass spectrometry imaging and single-cell transcriptome atlas strategies provide novel insights into taxoid biosynthesis and transport in Taxus mairei stems[J]. The Plant Journal, 2023, 115(5):1243-1260.DOI: 10.1111/tpj.16315.
[109]
KASHIMA Y, SUZUKI A, SUZUKI Y. An informative approach to single-cell sequencing analysis[J]. Advances in Experimental Medicine and Biology, 2019, 1129:81-96.DOI: 10.1007/978-981-13-6037-4_6.
[110]
MARAND A P, CHEN Z L, GALLAVOTTI A, et al. A cis-regulatory atlas in maize at single-cell resolution[J]. Cell, 2021, 184(11):3041-3055.e21.DOI: 10.1016/j.cell.2021.04.014.
[111]
KUBO M, NISHIYAMA T, TAMADA Y, et al. Single-cell transcriptome analysis of Physcomitrella leaf cells during reprogramming using microcapillary manipulation[J]. Nucleic Acids Research, 2019, 47(9):4539-4553.DOI: 10.1093/nar/gkz181.
[112]
EISENSTEIN M. Seven technologies to watch in 2022[J]. Nature, 2022, 601(7894):658-661.DOI: 10.1038/d41586-022-00163-x.
[113]
RAO A, BARKLEY D, FRANÇA G S, et al. Exploring tissue architecture using spatial transcriptomics[J]. Nature, 2021, 596(7871):211-220.DOI: 10.1038/s41586-021-03634-9.
[114]
KARIMI E, YU M W, MARITAN S M, et al. Single-cell spatial immune landscapes of primary and metastatic brain tumours[J]. Nature, 2023, 614(7948):555-563.DOI: 10.1038/s41586-022-05680-3.
[115]
MONCADA R, BARKLEY D, WAGNER F, et al. Integrating microarray-based spatial transcriptomics and single-cell RNA-seq reveals tissue architecture in pancreatic ductal adenocarcinomas[J]. Nature Biotechnology, 2020, 38(3):333-342.DOI: 10.1038/s41587-019-0392-8.
[116]
LV K W, LIU N X, NIU Y N, et al. Spatial transcriptome analysis reveals de novo regeneration of poplar roots[J]. Horticulture Research, 2024, 11(11):uhae237.DOI: 10.1093/hr/uhae237.
[117]
TAO Y F, ZHOU X L, SUN L Q, et al. Highly efficient and robust π-FISH rainbow for multiplexed in situ detection of diverse biomolecules[J]. Nature Communications, 2023, 14:443.DOI: 10.1038/s41467-023-36137-4.
[118]
ZHANG Y H, CHEN S, XU L H, et al. Transcription factor PagMYB31 positively regulates cambium activity and negatively regulates xylem development in poplar[J]. The Plant Cell, 2024, 36(5):1806-1828.DOI: 10.1093/plcell/koae040.
[119]
WANG Y, HUAN Q, LI K, et al. (2021). Single-cell transcriptome atlas of the leaf and root of rice seedlings. Journal of Genetics and Genomics, 2021, 48(10):881-898.DOI: 10.1016/j.jgg.2021.06.001.
[120]
ZHANG D P, LI Z Y, HTWE Y M, et al. Insights into the developmental trajectories of zygotic embryo,embryogenic callus and somatic embryo in coconut by single-cell transcriptomic analysis[J]. Industrial Crops and Products, 2024, 212:118338.DOI: 10.1016/j.indcrop.2024.118338.
[121]
MCFALINE-FIGUEROA J L, TRAPNELL C, CUPERUS J T. The promise of single-cell genomics in plants[J]. Current Opinion in Plant Biology, 2020, 54:114-121.DOI: 10.1016/j.pbi.2020.04.002.
PDF(1479 KB)

Accesses

Citation

Detail

Sections
Recommended
The full text is translated into English by AI, aiming to facilitate reading and comprehension. The core content is subject to the explanation in Chinese.

/