Effects of Miscanthus on soil physicochemical characteristics and microbial community composition in saline-alkali soil

ZHANG Zhe, ZONG Junqin, LI Ling, LU Hailong, XUE Jianhui

Journal of Nanjing Forestry University (Natural Sciences Edition) ›› 2026, Vol. 50 ›› Issue (1) : 50-57.

PDF(2343 KB)
PDF(2343 KB)
Journal of Nanjing Forestry University (Natural Sciences Edition) ›› 2026, Vol. 50 ›› Issue (1) : 50-57. DOI: 10.12302/j.issn.1000-2006.202504004

Effects of Miscanthus on soil physicochemical characteristics and microbial community composition in saline-alkali soil

Author information +
History +

Abstract

【Objective】 To investigate the effects of planting different Miscanthus species on the physicochemical properties of saline-alkali soil and the composition and structure of the microbial community, thus providing a basis for selecting suitable Miscanthus species for ecological restoration of saline-alkali land.【Method】Rhizosphere soil, non-rhizosphere soil, and bare land (CK) soil samples were collected from the planting sites of five Miscanthus species: Miscanthus sinensis, Miscanthus sacchariflorus, Miscanthus floridulus, Miscanthus lutarioriparius, and Miscanthus × longiberbis. Soil physicochemical properties were measured, and high-throughput sequencing technology was employed to analyze the composition of the soil microbial community.【Result】Compared with bare land soil, planting Miscanthus significantly improved the soil environment: soil water content increased in the planting sites of all five Miscanthus species, with a significant increase of 40.4% in the Miscanthus sinensis planting site. Soil pH and total salt content decreased, with a 2.6% reduction in pH in the M. × longiberbis planting site compared to CK, and a significant 83.9% reduction in total salt content in the M. sacchariflorus planting site. The contents of organic carbon, total nitrogen, and available phosphorus increased. While no significant differences were observed in microbial community α diversity, the community composition and structure underwent significant changes, with Pseudomonadota being the dominant phylum. The relative abundances of Acidobacteriota, Actinobacteriota, and Chloroflexota significantly increased, whereas those of Gemmatimonadota and Cyanobacteria significantly decreased. 【Conclusion】Planting Miscanthus effectively ameliorates the physicochemical properties of saline-alkali soil, enhances soil fertility, and optimizes microbial community structure. Among the tested species, M. sacchariflorus exhibited the best overall improvement effects. The findings of this study provide a theoretical basis and practical guidance for selecting Miscanthus species in the ecological restoration of saline-alkali land.

Key words

Miscanthus spp. / saline land / soil physical and chemical properties / microbial community composition

Cite this article

Download Citations
ZHANG Zhe , ZONG Junqin , LI Ling , et al . Effects of Miscanthus on soil physicochemical characteristics and microbial community composition in saline-alkali soil[J]. Journal of Nanjing Forestry University (Natural Sciences Edition). 2026, 50(1): 50-57 https://doi.org/10.12302/j.issn.1000-2006.202504004

References

[1]
王佳丽, 黄贤金, 钟太洋, 等. 盐碱地可持续利用研究综述[J]. 地理学报, 2011, 66(5):673-684.
WANG J L, HUANG X J, ZHONG T Y, et al. Review on sustainable utilization of salt-affected land[J]. Acta Geographica Sinica, 2011, 66(5):673-684.DOI: 10.3969/j.issn.1002-6819.2010.07.003.
[2]
李彬, 王志春, 孙志高, 等. 中国盐碱地资源与可持续利用研究[J]. 干旱地区农业研究, 2005, 23(2):154-158.
LI B, WANG Z C, SUN Z G, et al. Resources and sustainable resource exploitation of salinized land in China[J]. Agricultural Research in the Arid Areas, 2005, 23(2):154-158.DOI: 10.3321/j.issn:1000-7601.2005.02.032.
[3]
王伟, 解建仓, 黄俊铭, 等. 盐碱地治理新模式研究[J]. 水资源与水工程学报, 2009, 20(5):117-119,122.
WANG W, XIE J C, HUANG J M, et al. Study on the new improvement mode for the saline land[J]. Journal of Water Resources and Water Engineering, 2009, 20(5):117-119,122.DOI: 10.3321/j.issn:0559-9350.2009.03.017.
[4]
何蕾, 李国胜, 崔林林, 等. 江苏沿海滩涂围垦与社会经济发展的耦合关系[J]. 生态学报, 2021, 41(23):9228-9238.
HE L, LI G S, CUI L L, et al. Coupling relationship between reclamation and social economics development in north Jiangsu coastal area[J]. Acta Ecologica Sinica, 2021, 41(23):9228-9238.DOI: 10.5846/stxb202007161869.
[5]
马国辉, 郑殿峰, 母德伟, 等. 耐盐碱水稻研究进展与展望[J]. 杂交水稻, 2024, 39(1):1-10.
MA G H, ZHENG D F, MU D W, et al. Research progress and prospect of saline-alkali tolerant rice[J]. Hybrid Rice, 2024, 39(1):1-10.DOI: 10.16267/j.cnki.1005-3956.20221117.389.
[6]
孙盛楠, 严学兵, 尹飞虎. 我国沿海滩涂盐碱地改良与综合利用现状与展望[J]. 中国草地学报, 2024, 46(2):1-13.
SUN S N, YAN X B, YIN F H. Current situation and prospect of improvement and comprehensive utilization for saline-alkali land of coastal tidal flats in China[J]. Chinese Journal of Grassland, 2024, 46(2):1-13.DOI: 10.16742/j.zgcdxb.20230322.
[7]
赵英, 王丽, 赵惠丽, 等. 滨海盐碱地改良研究现状及展望[J]. 中国农学通报, 2022, 38(3):67-74.
ZHAO Y, WANG L, ZHAO H L, et al. Research status and prospects of saline-alkali land amelioration in the coastal region of China[J]. Chinese Agricultural Science Bulletin, 2022, 38(3):67-74.DOI: 10.11975/j.issn.1002-6819.2020.21.011.
[8]
LI J S, CHEN H Y, GUO K, et al. Changes in soil properties induced by pioneer vegetation patches in coastal ecosystem[J]. CATENA, 2021, 204:105393.DOI: 10.1016/j.catena.2021.105393.
[9]
CHEN Q L, CUI H L, SU J Q, et al. Antibiotic resistomes in plant microbiomes[J]. Trends in Plant Science, 2019, 24(6):530-541.DOI: 10.1016/j.tplants.2019.02.010.
[10]
KOEVOETS I T, VENEMA J H, ELZENGA J T M, et al. Roots withstanding their environment:exploiting root system architecture responses to abiotic stress to improve crop tolerance[J]. Frontiers in Plant Science, 2016, 7:1335.DOI: 10.3389/fpls.2016.01335.
[11]
MANOUSAKI E, KALOGERAKIS N. Halophytes:an emerging trend in phytoremediation[J]. International Journal of Phytoremediation, 2011, 13(10):959-969.DOI: 10.1080/15226514.2010.532241.
[12]
欧阳旭, 张亚茹, 李跃林. 基于生物质能的芒属(Miscanthus)植物碳动态和收支研究进展[J]. 生态环境学报, 2013, 22(9):1633-1638.
OUYANG X, ZHANG Y R, LI Y L. A review on carbon dynamics and budget of biomass energy species of Miscanthus spp.[J]. Ecology and Environmental Sciences, 2013, 22(9):1633-1638.DOI: 10.16258/j.cnki.1674-5906.2013.09.006.
[13]
詹伟君, 任君霞, 金松恒, 等. 能源植物芒草的农学特性研究进展[J]. 浙江农林大学学报, 2012, 29(1):119-124.
ZHAN W J, REN J X, JIN S H, et al. Research progress on agronomic characteristics of Miscanthus[J]. Journal of Zhejiang A & F University, 2012, 29(1):119-124.DOI: 10.3969/j.issn.2095-0756.2012.01.020.
[14]
于延冲, 易自力, 周功克. 能源植物芒草研究进展与综合利用现状[J]. 生命科学, 2014, 26(5):474-480.
YU Y C, YI Z L, ZHOU G K. Research progress and comprehensive utilization of Miscanthus[J]. Chinese Bulletin of Life Sciences, 2014, 26(5):474-480.DOI: 10.13376/j.cbls/2014070.
[15]
郑铖, 易自力, 肖亮, 等. NaCl胁迫对芒属种子萌发及幼苗生长的影响[J]. 中国草地学报, 2015, 37(3):37-42.
ZHENG C, YI Z L, XIAO L, et al. Effects of NaCl stress on seed germination and seedling growth of Miscanthus[J]. Chinese Journal of Grassland, 2015, 37(3):37-42.DOI: 10.3969/j.issn.1673-5021.2015.03.007.
[16]
鲍士旦. 土壤农化分析[M].3版. 北京: 中国农业出版社, 2000.
BAO S D. Soil and agricultural chemistry analysis[M].3rd ed. Beijing: China Agriculture Press, 2000.
[17]
邱莉萍, 张兴昌. 黄土高原沟壑区小流域不同植被覆被对土壤性质的影响[J]. 水土保持研究, 2010, 17(3):64-68.
QIU L P, ZHANG X C. Vegetation types effects on soil properties in small watershed of the Loess Plateau[J]. Research of Soil and Water Conservation, 2010, 17(3):64-68.
[18]
段鹏飞, 陈彦, 张菲, 等. 芒草种植对土壤细菌群落结构和功能的影响[J]. 应用生态学报, 2019, 30(6):2030-2038.
DUAN P F, CHEN Y, ZHANG F, et al. Effect of Miscanthus planting on the structure and function of soil bacterial community[J]. Chinese Journal of Applied Ecology, 2019, 30(6):2030-2038.DOI: 10.13287/j.1001-9332.201906.038.
[19]
王光华, 刘俊杰, 于镇华, 等. 土壤酸杆菌门细菌生态学研究进展[J]. 生物技术通报, 2016, 32(2):14-20.
WANG G H, LIU J J, YU Z H, et al. Research progress of acidobacteria ecology in soils[J]. Biotechnology Bulletin, 2016, 32(2):14-20.DOI: 10.13560/j.cnki.biotech.bull.1985.2016.02.002.
[20]
鲜文东, 张潇橦, 李文均. 绿弯菌的研究现状及展望[J]. 微生物学报, 2020, 60(9):1801-1820.
XIAN W D, ZHANG O, LI W J. Research status and prospect on bacterial phylum Chloroflexi[J]. Acta Microbiologica Sinica, 2020, 60(9):1801-1820.DOI: 10.13343/j.cnki.wsxb.20200463.
[21]
JANSSEN P H, YATES P S, GRINTON B E, et al. Improved culturability of soil bacteria and isolation in pure culture of novel members of the divisions Acidobacteria,Actinobacteria,Proteobacteria,and Verrucomicrobia[J]. Applied and Environmental Microbiology, 2002, 68(5):2391-2396.DOI: 10.1128/AEM.68.5.2391-2396.2002.
[22]
JONES R T, ROBESON M S, LAUBER C L, et al. A comprehensive survey of soil acidobacterial diversity using pyrosequencing and clone library analyses[J]. The ISME Journal, 2009, 3(4):442-453.DOI: 10.1038/ismej.2008.127.
[23]
耿德洲, 黄菁华, 霍娜, 等. 黄土高原半干旱区不同种植年限紫花苜蓿人工草地土壤微生物和线虫群落特征[J]. 应用生态学报, 2020, 31(4):1365-1377.
GENG D Z, HUANG J H, HUO N, et al. Characteristics of soil microbial and nematode communities under artificial Medicago sativa grasslands with different cultivation years in semi-arid region of Loess Plateau,northwest China[J]. Chinese Journal of Applied Ecology, 2020, 31(4):1365-1377.DOI: 10.13287/j.1001-9332.202004.034.
[24]
杨阳, 李海亮, 马凯丽, 等. 放线菌及其代谢产物研究进展:基于CiteSpace可视化分析[J]. 微生物学报, 2022, 62(10):3825-3843.
YANG Y, LI H L, MA K L, et al. Actinomycetes and their metabolites:visual analysis based on cite space[J]. Acta Microbiologica Sinica, 2022, 62(10):3825-3843.DOI: 10.13343/j.cnki.wsxb.20220088.
[25]
MUJAKIC I, PIWOSZ K, KOBLÍŽEK M. Phylum gemmatimonadota and its role in the environment[J]. Microorganisms, 2022, 10(1):151.DOI: 10.3390/microorganisms10010151.
[26]
靳新影, 张肖冲, 金多, 等. 腾格里沙漠东南缘不同生物土壤结皮细菌多样性及其季节动态特征[J]. 生物多样性, 2020, 28(6):718-726.
JIN X Y, ZHANG X C, JIN D, et al. Diversity and seasonal dynamics of bacteria among different biological soil crusts in the southeast Tengger desert[J]. Biodiversity Science, 2020, 28(6):718-726.DOI: 10.17520/biods.2019298.
[27]
姚丽茹, 李伟, 朱员正, 等. 施用生物炭对麦田土壤细菌群落多样性和冬小麦生长的影响[J]. 环境科学, 2023, 44(6):3396-3407.
YAO L R, LI W, ZHU Y Z, et al. Effects of biochar application on soil bacterial community diversity and winter wheat growth in wheat fields[J]. Environmental Science, 2023, 44(6):3396-3407.DOI: 10.13227/j.hjkx.202207125.
[28]
SCHOPF J W. Microfossils of the early Archean apex chert:new evidence of the antiquity of life[J]. Science, 1993, 260:640-646.DOI: 10.1126/science.260.5108.640.
[29]
CUI Y X, BING H J, FANG L C, et al. Diversity patterns of the rhizosphere and bulk soil microbial communities along an altitudinal gradient in an alpine ecosystem of the eastern Tibetan Plateau[J]. Geoderma, 2019, 338:118-127.DOI: 10.1016/j.geoderma.2018.11.047.
[30]
HU Y J, VERESOGLOU S D, TEDERSOO L, et al. Contrasting latitudinal diversity and co-occurrence patterns of soil fungi and plants in forest ecosystems[J]. Soil Biology and Biochemistry, 2019, 131:100-110.DOI: 10.1016/j.soilbio.2019.01.001.
[31]
杜昊楠, 兰国玉, 吴志祥, 等. 海南热带雨林土壤细菌组成与多样性分析[J]. 南方农业学报, 2022, 53(3):840-849.
DU H N, LAN G Y, WU Z X, et al. Study on soil bacterial composition and diversity of tropical rainforest in Hainan Island[J]. Journal of Southern Agriculture, 2022, 53(3):840-849.DOI: 10.3969/j.issn.2095-1191.2022.03.026.
[32]
张丽, 闫倩, 王保莉, 等. 不同土地利用方式下滨海盐土细菌多样性变化[J]. 西北农业学报, 2011, 20(8):163-167,198.
ZHANG L, YAN Q, WANG B L, et al. Changes in bacteria diversity of coastal saline soils under different land use patterns[J]. Acta Agriculturae Boreali-Occidentalis Sinica, 2011, 20(8):163-167,198.DOI: 10.7606/j.issn.1004-1389.2011.8.201100833.
[33]
李寒, 张晓黎, 郭晓红, 等. 滨海盐渍化土壤中蓝细菌多样性及分布[J]. 微生物学通报, 2015, 42(5):957-967.
LI H, ZHANG X L, GUO X H, et al. Diversity and distribution of cyanobacteria in coastal saline soils[J]. Microbiology China, 2015, 42(5):957-967.DOI: 10.13344/j.microbiol.china.140897.
PDF(2343 KB)

Accesses

Citation

Detail

Sections
Recommended
The full text is translated into English by AI, aiming to facilitate reading and comprehension. The core content is subject to the explanation in Chinese.

/