Expression patterns and functional analysis of three Liriodendron chinense PIN1 homologous genes in somatic embryogenesis

HAO Zhaodong, MA Xiaoxiao, HENG Liuhong, LU Ye, LU Lu, MA Yingxuan, SHI Jisen, CHEN Jinhui

JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2025, Vol. 49 ›› Issue (4) : 57-70.

PDF(153890 KB)
PDF(153890 KB)
JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2025, Vol. 49 ›› Issue (4) : 57-70. DOI: 10.12302/j.issn.1000-2006.202504009

Expression patterns and functional analysis of three Liriodendron chinense PIN1 homologous genes in somatic embryogenesis

Author information +
History +

Abstract

【Objective】This study aims to elucidate the expression patterns and functional roles of the auxin efflux carrier gene PIN1 during somatic embryogenesis in Liriodendron chinense.【Method】The temporal expression profiles of three homologous genes, LcPIN1a, LcPIN1b, and LcPIN1c, during somatic embryogenesis were analyzed using quantitative real-time PCR (qRT-PCR) at key developmental stages, including the globular, heart-shaped, torpedo-shaped, and cotyledon embryo stages. To investigate spatial expression, about 3.5 kb upstream promoter regions of each LcPIN1 gene were cloned and fused to the β-glucuronidase (GUS) reporter gene and the mCherry fluorescent protein reporter gene. The recombinant constructs were introduced into embryogenic callus of Liriodendron hybrid via Agrobacterium tumefaciens-mediated transformation. Transgenic calli were selected and induced to undergo somatic embryogenesis, followed by histochemical GUS staining and fluorescence microscopy to visualize the spatiotemporal expression patterns. In parallel, the full-length coding sequences of LcPIN1a, LcPIN1b and LcPIN1c were cloned into overexpression vectors driven by the constitutive Cauliflower Mosaic Virus 35S (CaMV35S) promoter and similarly transformed into embryogenic callus of Liriodendron hybrid. The effects of overexpression on somatic embryo formation were assessed by calculating the somatic embryogenesis efficiency, defined as the number of somatic embryos produced by a certain amount of embryogenic callus, and comparing the data statistically across independent transgenic lines.【Result】The qRT-PCR data revealed that all three LcPIN1 homologs were dynamically expressed during somatic embryogenesis, displaying both temporal overlap and distinct peaks at specific developmental stages. GUS staining and mCherry fluorescence assays provided high-resolution insights into their spatial expression patterns. During the globular embryo stage, LcPIN1a and LcPIN1c exhibited pronounced polar localization, with signals concentrated at one pole of the embryo, suggesting their early involvement in establishing embryonic polarity and the apical-basal axis. By contrast, LcPIN1b showed weak and diffuse expression at this stage. At the heart-shaped embryo stage, clear expression divergence was observed: LcPIN1a was predominantly expressed in the developing vascular tissues; LcPIN1b exhibited uniform expression throughout the embryo body; and LcPIN1c was specifically localized in the shoot apical meristem region and the nascent cotyledon primordia. As the embryos progressed into the torpedo-shaped and cotyledon stages, the three homologs displayed convergent expression patterns, with signals extending continuously from the cotyledon tips along the vascular strands down to the embryonic root tip. This suggests that LcPIN1a, LcPIN1b and LcPIN1c may coordinately maintain the auxin gradient required for proper somatic embryo elongation and differentiation during late embryogenesis. Overexpression experiments demonstrated that ectopic expression of each LcPIN1 homolog significantly inhibited somatic embryogenesis. Transgenic calli overexpressing LcPIN1a, LcPIN1b or LcPIN1c exhibited reduced somatic embryogenesis efficiency compared to wild-type controls, with a negative correlation between transgene expression levels and embryogenic potential. Notably, transgenic lines with higher levels of LcPIN1 overexpression showed a pronounced decline in somatic embryo formation, indicating that excessive auxin efflux may disrupt the finely tuned auxin gradients required for embryogenic competence and proper morphological development.【Conclusion】This study provides comprehensive evidence that the spatiotemporal precision of PIN1-mediated auxin transport plays a pivotal role in somatic embryogenesis of L. chinense. The redundant yet specialized expression patterns of LcPIN1a, LcPIN1b and LcPIN1c highlight their coordinated function in regulating auxin distribution at distinct developmental stages and tissue sites. Overexpression of LcPIN1 homologs perturbs auxin homeostasis, leading to impaired somatic embryogenesis. These findings advance our understanding of the molecular mechanisms underlying somatic embryogenesis in woody species and underscore the importance of auxin transport regulation for optimizing plant regeneration systems. This work also lays a foundation for future studies on functional diversification of PIN proteins and their potential applications in improving somatic embryogenesis efficiency in forest tree breeding.

Key words

Liriodendron chinense / auxin transporter / PIN1 / expression pattern / somatic embryogenesis

Cite this article

Download Citations
HAO Zhaodong , MA Xiaoxiao , HENG Liuhong , et al . Expression patterns and functional analysis of three Liriodendron chinense PIN1 homologous genes in somatic embryogenesis[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2025, 49(4): 57-70 https://doi.org/10.12302/j.issn.1000-2006.202504009

References

[1]
CORREDOIRA E, MERKLE S A, MARTÍNEZ M T, et al. Non-zygotic embryogenesis in hardwood species[J]. Critical Reviews in Plant Sciences, 2019, 38(1):29-97.DOI: 10.1080/07352689.2018.1551122.
[2]
许智宏, 张宪省, 苏英华, 等. 植物细胞全能性和再生[J]. 中国科学:生命科学, 2019, 49(10):1282-1300.
XU Z H, ZHANG X S, SU Y H, et al. Plant cell totipotency and regeneration[J]. Scientia Sinica (Vitae), 2019, 49(10):1282-1300.DOI: 10.1360/SSV-2019-0199.
[3]
SALAÜN C, LEPINIEC L, DUBREUCQ B. Genetic and molecular control of somatic embryogenesis[J]. Plants, 2021, 10(7):1467.DOI: 10.3390/plants10071467.
[4]
TANG L P, ZHANG X S, SU Y H. Regulation of cell reprogramming by auxin during somatic embryogenesis[J]. aBIOTECH, 2020, 1(3):185-193.DOI: 10.1007/s42994-020-00029-8.
[5]
GAJ M D, TROJANOWSKA A, UJCZAK A, et al. Hormone-response mutants of Arabidopsis thaliana (L.) Heynh.impaired in somatic embryogenesis[J]. Plant Growth Regulation, 2006, 49(2):183-197.DOI: 10.1007/s10725-006-9104-8.
[6]
SU Y H, ZHAO X Y, LIU Y B, et al. Auxin-induced WUS expression is essential for embryonic stem cell renewal during somatic embryogenesis in Arabidopsis[J]. The Plant Journal, 2009, 59(3):448-460.DOI: 10.1111/j.1365-313X.2009.03880.x.
[7]
BAI B, SU Y H, YUAN J, et al. Induction of somatic embryos in Arabidopsis requires local YUCCA expression mediated by the down-regulation of ethylene biosynthesis[J]. Molecular Plant, 2013, 6(4):1247-1260.DOI: 10.1093/mp/sss154.
[8]
WÓJCIKOWSKA B, JASKÓLA K, GASIOREK P, et al. LEAFY COTYLEDON 2 (LEC2) promotes embryogenic induction in somatic tissues of Arabidopsis,via YUCCA-mediated auxin biosynthesis[J]. Planta, 2013, 238(3):425-440.DOI: 10.1007/s00425-013-1892-2.
[9]
LI M F, WROBEL-MAREK J, HEIDMANN I, et al. Auxin biosynthesis maintains embryo identity and growth during BABY BOOM-induced somatic embryogenesis[J]. Plant Physiology, 2022, 188(2):1095-1110.DOI: 10.1093/plphys/kiab558.
[10]
ADAMOWSKI M, FRIML J. PIN-dependent auxin transport:action,regulation,and evolution[J]. The Plant Cell, 2015, 27(1):20-32.DOI: 10.1105/tpc.114.134874.
[11]
BLILOU I, XU J, WILDWATER M, et al. The PIN auxin efflux facilitator network controls growth and patterning in Arabidopsis roots[J]. Nature, 2005, 433(7021):39-44.DOI: 10.1038/nature03184.
[12]
FRIML J, BENKOVÁ E, BLILOU I, et al. AtPIN4 mediates sink-driven auxin gradients and root patterning in Arabidopsis[J]. Cell, 2002, 108(5):661-673.DOI: 10.1016/S0092-8674(02)00656-6.
[13]
OKADA K, UEDA J, KOMAKI M K, et al. Requirement of the auxin polar transport system in early stages of Arabidopsis floral bud formation[J]. The Plant Cell, 1991, 3(7):677-684.DOI: 10.1105/tpc.3.7.677.
[14]
FRIML J, VIETEN A, SAUER M, et al. Efflux-dependent auxin gradients establish the apical-basal axis of Arabidopsis[J]. Nature, 2003, 426(6963):147-153.DOI: 10.1038/nature02085.
[15]
SU Y H, ZHANG X S. Auxin gradients trigger de novo formation of stem cells during somatic embryogenesis[J]. Plant Signaling & Behavior, 2009, 4(7):574-576.DOI: 10.4161/psb.4.7.8730.
[16]
PALOVAARA J, HALLBERG H, STASOLLA C, et al. Expression of a gymnosperm PIN homologous gene correlates with auxin immunolocalization pattern at cotyledon formation and in demarcation of the procambium during Picea abies somatic embryo development and in seedling tissues[J]. Tree Physiology, 2010, 30(4):479-489.DOI: 10.1093/treephys/tpp126.
[17]
郝日明, 贺善安, 汤诗杰, 等. 鹅掌楸在中国的自然分布及其特点[J]. 植物资源与环境, 1995, 4(1):1-6.
HAO R M, HE S A, TANG S J, et al. Geographical distribution of liriodederon chinense in China and its significance[J]. Journal of Plant Resources and Environment, 1995, 4(1):1-6.
[18]
PARKS C R, MILLER N G, WENDEL J F, et al. Genetic divergence within the genus Liriodendron (Magnoliaceae)[J]. Annals of the Missouri Botanical Garden, 1983, 70(4):658.DOI: 10.2307/2398983.
[19]
PARKS C R, WENDEL J F. Molecular divergence between Asian and north American species of Liriodendron (Magnoliaceae) with implications for interpretation of fossil floras[J]. American Journal of Botany, 1990, 77(10):1243-1256.DOI: 10.1002/j.1537-2197.1990.tb11376.x.
[20]
李火根, 施季森. 杂交鹅掌楸良种选育与种苗繁育[J]. 林业科技开发, 2009(3):1-5.
LI H G, SHI J S. Breeding and seedling breeding of hybrid Liriodendron chinense[J]. China Forestry Science and Technology, 2009(3):1-5.
[21]
向其柏, 王章荣. 杂交马褂木的新名称:亚美马褂木[J]. 南京林业大学学报(自然科学版), 2012, 36(2):1-2.
XIANG Q B, WANG Z R. A new scientific name of hybrid Liriodendron:L. sino-americanum[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2012, 36(2):1-2.DOI: 10.3969/j.issn.1000-2006.2012.02.001.
[22]
LI M P, WANG D, LONG X F, et al. Agrobacterium-mediated genetic transformation of embryogenic callus in a Liriodendron hybrid (L.chinense × L.tulipifera)[J]. Frontiers in Plant Science, 2022,13:802128.DOI: 10.3389/fpls.2022.802128.
[23]
LI C R, JIANG P S, ZHANG J J, et al. Highly efficient homozygous CRISPR/Cas9 gene editing based on single-cell-originated somatic embryogenesis in Liriodendron tulipifera[J]. Plants, 2025, 14(3):472.DOI: 10.3390/plants14030472.
[24]
ZHANG J J, HAO Z D, RUAN X X, et al. Role of BABY BOOM transcription factor in promoting somatic embryogenesis and genetic transformation in a woody magnoliid Liriodendron[J/OL]. Plant,Cell & Environment, 2025(2025-03-20)[2025-04-01].DOI: 10.1111/pce.15483.
[25]
CHEN J H, HAO Z D, GUANG X M, et al. Liriodendron genome sheds light on angiosperm phylogeny and species-pair differentiation[J]. Nature Plants, 2018, 5(1):18-25.DOI: 10.1038/s41477-018-0323-6.
[26]
HU L F, WANG P K, LONG X F, et al. The PIN gene family in relic plant L. chinense:genome-wide identification and gene expression profiling in different organizations and abiotic stress responses[J]. Plant Physiology and Biochemistry, 2021, 162:634-646.DOI: 10.1016/j.plaphy.2021.03.030.
[27]
LI R, PAN Y, HU L F, et al. PIN3 from Liriodendron may function in inflorescence development and root elongation[J]. Forests, 2022, 13(4):568.DOI: 10.3390/f13040568.
[28]
郝兆东, 马筱筱, 王丹丹, 等. 鹅掌楸LcPIN1a基因的克隆及其对植株生长发育的影响[J]. 南京林业大学学报(自然科学版), 2024, 48(6):51-61.
HAO Z D, MA X X, WANG D D, et al. Cloning of the Liriodendron chinense LcPIN1a genes and its effect on plant growth and development[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2024, 48(6):51-61.DOI:10.12302/j.issn.1000-2006.202404005.
[29]
LI T T, YUAN W G, QIU S, et al. Selection of reference genes for gene expression analysis in Liriodendron hybrids’ somatic embryogenesis and germinative tissues[J]. Scientific Reports, 2021,11:4957.DOI: 10.1038/s41598-021-84518-w.
[30]
LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2 (-Delta Delta C(T)) Method[J]. Methods, 2001, 25(4):402-408.DOI: 10.1006/meth.2001.1262.
[31]
MAVRODIEV E V, DERVINIS C, WHITTEN W M, et al. A new,simple,highly scalable,and efficient protocol for genomic DNA extraction from diverse plant taxa[J]. Applications in Plant Sciences, 2021, 9(3):e11413.DOI: 10.1002/aps3.11413.
[32]
POURESMAEIL M, DALL’ARA M, SALVATO M, et al. Cauliflower mosaic virus:virus-host interactions and its uses in biotechnology and medicine[J]. Virology, 2023, 580:112-119.DOI: 10.1016/j.virol.2023.02.008.
[33]
SAIDI Y, SCHAEFER D G, GOLOUBINOFF P, et al. The CaMV 35S promoter has a weak expression activity in dark grown tissues of moss Physcomitrella patens[J]. Plant Signaling & Behavior, 2009, 4(5):457-459.DOI: 10.4161/psb.4.5.8541.
[34]
SCHNURR J A, GUERRA D J. The CaMV-35S promoter is sensitive to shortened photoperiod in transgenic tobacco[J]. Plant Cell Reports, 2000, 19(3):279-282.DOI: 10.1007/s002990050012.
[35]
PRET’OVÁ A, OBERT B, WETZSTEIN H Y. Leaf developmental stage and tissue location affect the detection of β-glucuronidase in transgenic tobacco plants[J]. Biotechnology Letters, 2001, 23(7):555-558.DOI: 10.1023/A:1010311524048.
[36]
SUNILKUMAR G, MOHR L, LOPATA-FINCH E, et al. Developmental and tissue-specific expression of CaMV35S promoter in cotton as revealed by GFP[J]. Plant Molecular Biology, 2002, 50(3):463-479.DOI: 10.1023/A:1019832123444.
[37]
CUSTERS J B M, SNEPVANGERS S C H J, JANSEN H J, et al. The 35S-CaMV promoter is silent during early embryogenesis but activated during nonembryogenic sporophytic development in microspore culture[J]. Protoplasma, 1999, 208(1):257-264.DOI: 10.1007/BF01279097.
[38]
SAINI K, ABDELGAWAD H, MARKAKIS M N, et al. Perturbation of auxin homeostasis and signaling by PINOID overexpression induces stress responses in Arabidopsis[J]. Frontiers in Plant Science, 2017,8:1308.DOI: 10.3389/fpls.2017.01308.
PDF(153890 KB)

Accesses

Citation

Detail

Sections
Recommended
The full text is translated into English by AI, aiming to facilitate reading and comprehension. The core content is subject to the explanation in Chinese.

/