The effects of calcium treatment on the growth and development of hybrid poplar ‘84K’ in vitro culture

MU Zhiying, CONTEH Omar, JI Yueling, CAO Fuliang, ZHOU Xiaohong

JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2025, Vol. 49 ›› Issue (4) : 145-151.

PDF(27874 KB)
PDF(27874 KB)
JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2025, Vol. 49 ›› Issue (4) : 145-151. DOI: 10.12302/j.issn.1000-2006.202505008

The effects of calcium treatment on the growth and development of hybrid poplar ‘84K’ in vitro culture

Author information +
History +

Abstract

【Objective】Woody plants typically have long growth cycles and limited regenerative capacity, which significantly restricts the efficiency of forest tree breeding. In vitro culture techniques can overcome seasonal constraints and accelerate propagation. Calcium, as an essential nutrient and a critical intracellular second messenger, plays a vital role in plant growth and development. However, its specific regulation in woody plant tissue culture remain unclear. Systematic investigation of calcium treatment under the in vitro condition is of great significance for improving tissue culture efficiency and supporting breeding strategies in forestry.【Method】We treated shoots of the woody model speices hybrid poplar ‘84K’ (Populus alba × P. glandulosa) in vitro under Ca2+ concentrations of 0, 1.5, 3.0, 6.0, 9.0 and 15.0 mmol/L. The effects of Ca2+ on shoot growth and adventitious root induction were systematically analyzed.【Results】Within the 0-9.0 mmol/L range, increasing Ca2+ concentrations enhanced shoot growth. The maximum plant height was observed at 6.0 mmol/L Ca2+, while leaf expansion was most pronounced at 9 mmol/L, indicating an optimal concentration range of 6.0-9.0 mmol/L. Complete calcium deficiency(0 mmol/L) disrupted apical dominance, resulting in shoot tip necrosis and excessive elongation and thickening of the primary root. In contrast, high Ca2+ concentration (15 mmol/L) significantly inhibited overall growth, with reduced plant height and smaller leaves. Ca2+ promoted stem elongation mainly by increasing internode length rather than node number. While the response intensity varied across different basal salts, the overall trend was consistent. Different concentration of Ca2+ treatments had no significant effect on the number of adventitious roots, but calcium deficiency led to pronounced elongation and thickening of adventitious roots, suggesting a specific root morphogenetic response to Ca2+ dificiency.【Conclusion】Ca2+ exerts concentration-dependent and tissue-specific effects on poplar in vitro. Moderate Ca2+ levels help maintain apical dominance and promote shoot elongation, while the Ca2+ deficiency triggers architectural remodeling in roots. These findings provide preliminary insights into the differential regulation of shoot and root development by Ca2+ in woody plants and lay a theoretical foundation for improving tissue culture systems and calcium-mediated molecular breeding in forestry.

Key words

in vitro culture / calcium treatment / elongation / adventitious root / poplar (Populus sp.)

Cite this article

Download Citations
MU Zhiying , CONTEH Omar , JI Yueling , et al . The effects of calcium treatment on the growth and development of hybrid poplar ‘84K’ in vitro culture[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2025, 49(4): 145-151 https://doi.org/10.12302/j.issn.1000-2006.202505008

References

[1]
BONGA J M, ADERKAS P. In vitro culture of trees[M]. Netherlands: Springer, 1992.
[2]
GAO K, LI J, AN X. Establishment of anther regeneration system of Populus euphratica[J]. Journal of Southwest Forestry University, 2020, 40(5): 159-165. DOI: 10.11929/j.swfu.201907008.
[3]
SADAK M S, HANAFY R S, ELKADY F M A M, et al. Exogenous calcium reinforces photosynthetic pigment content and osmolyte, enzymatic, and non-enzymatic antioxidants abundance and alleviates salt stress in bread wheat[J]. Plants, 2023, 12(7): 1532. DOI: 10.3390/plants12071532.
[4]
LIU X Y, LIU Y F, YI B T, SUN Z Y, et al. Foliar calcium application alleviates cold stress-induced photosynthetic inhibition in peanut[J]. Journal of Plant Nutrition and Fertilizers, 2022, 28(2): 291-301. DOI:10.11674/zwyf.2021379.
[5]
LAUTNER S, EHLTING B, WINDEISEN E, et al. Calcium nutrition has a significant influence on wood formation in poplar[J]. New Phytologist, 2007, 173(4):743-752. DOI: 10.1111/j.1469-8137.2007.01972.x.
[6]
MCLAUGHLIN S B, WIMMER R. Calcium physiology and terrestrial ecosystem processes[J]. New Phytologist, 1999, 142(3): 373-417. DOI: 10.1046/j.1469-8137.1999.00420.x.
[7]
CAO X, CHEN C, ZHANG D, et al. Influence of nutrient deficiency on root architecture and root hair morphology of trifoliate orange (Poncirus trifoliata L. Raf.) seedlings under sand culture[J]. Scientia Horticulturae, 2013, 162( Complete): 100-105. DOI:10.1016/j.scienta.2013.07.034.
[8]
AREND M, FROMM J. Seasonal variation in the K, Ca and P content and distribution of plasma membrane H+-ATPase in the cambium of Populus trichocarpa[M]. Oxiford, UK: BIOS Scientific Publisher, 2000: 67-70.
[9]
ZHANG Z, WU P, ZHANG W, et al. Calcium is involved in exogenous NO- induced enhancement of photosynthesis in cucumber (Cucumis sativus L.) seedlings under low temperature[J]. Scientia Horticulturae, 2020, 261(5): 108935. DOI: 10.1016/j.scienta.2019.108953.
[10]
BAN Q, LIU T, NING K, et al. Effect of calcium treatment on the browning of harvested eggplant fruits and its relation to the metabolisms of reactive oxygen species (ROS) and phenolics[J]. Food Science & Nutrition, 2021, 9(10): 5567-5574. DOI: 10.1002/fsn3.2517.
[11]
CISSE E M, ZHANG L J, PU Y J, et al. Exogenous Ca2+ associated with melatoninalleviates drought-induced damage in the woodytree Dalbergia odorifera[J]. Journal of Plant Growth Regulation, 2022, 41(6): 2356-2374. DOI: 10.1007/s00344-021-10449-5.
[12]
PU Y J, CISSE E H M, ZHANG L J, et al. Coupling exogenous melatonin with Ca2+ alleviated chilling stress in Dalbergia odorifera T. Chen[J]. Trees, 2021, 35(5): 1-14. DOI: 10.1007/s00468-021-02134-7.
[13]
SHANG X, XUE W, JIANG Y, et al. Ca2+ alleviated Cd- induced toxicity in Salix matsudana by affecting Cd- absorption, translocation, subcellular distribution, and chemical forms[J]. Environmental Science and Pollution Research. 2021, 28(47): 67535-67543. DOI: 10.1007/s11356-021-15293-4.
[14]
PIRAYESH N, GIRIDHAR M, KHEDHER A B, et al. Organellar calcium signaling in plants: an update[J]. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 2021, 1868( 4): 118948. DOI: 10.1016/j.bbamcr.2021.118948.
[15]
LIANG L L, SONG Y, QIAN W, et al. Metabolomics analysis reveals the responses of tea plants to excessive calcium[J]. Journal of the Science of Food and Agriculture, 2021, 101(13): 5678-5687. DOI: 10.1002/jsfa.11222
[16]
LI H, ZHAO Y, WENG X, et al. The most suitable calcium concentration for growth variesamong different tree species: taking Pinus tabuliformis, Pinus sylvestris var. mongolica, Populus, and Morus albas as examples[J]. Forest, 2023, 14(7): 1437. DOI: 10.3390/f14071437.
[17]
ZHOU W, WANG H. The physiological and molecular mechanisms of calcium uptake, transport, and metabolism in plants[J]. Chinese Bulletin of Botany, 2007, 24(6): 762-778. DOI: 10.1360/aps07042.
[18]
ARAS H B E. Physiological and histological responses of peach plants grafted onto different rootstocks under calcium deficiency conditions[J]. Scientia horticulturae, 2021, 281(1): 109967. DOI: 10.1016/j.scienta.2021.109967.
[19]
BLATT M R. Ca2+ signalling and control of guard-cell volume in stomatal movements[J]. Current Opinion in Plant Biology, 2000, 3(3): 196-204. DOI: 10.1016/S1369-5266(00)80065-5.
[20]
刘素荣. 钙肥对杨树幼苗生长及光合特性的影响[J]. 绿色科技, 2022, 24(13):134-136.
LIU S R. The effect of calcium fertilizer on the growth and photosynthetic characteristics of poplar seedlings[J]. Green Science and Technology, 2022, 24 (13): 134-136. DOI: 10.3969/j.issn.1674-9944.2022.13.033.
[21]
ZHANG T, DONG G, TIAN Y, et al. Effects of drought stress and Ca supply on the biomass allocation strategies of poplar and mulberry[J]. Forests, 2023, 14(3): 505. DOI: 10.3390/f14030505.
[22]
翁小航, 李慧, 周永斌, 等. 氮钙协同对杨树生长、光合特性及叶绿素荧光的影响[J]. 沈阳农业大学学报, 2021, 52(3): 356-361.
WENG X, LI H, ZHOU Y B, et al. The effect of nitrogen calcium synergy on the growth, photosynthetic characteristics, and chlorophyll fluorescence of poplar trees[J]. Journal of Shenyang Agricultural University, 2021, 52(3): 356-361. DOI: 10.3969/j.issn.1000-1700.2021.03.014.
[23]
李朝英, 郑路. 一种检测植物中钾、钙、镁含量的方法: 中国发明专利, 201510280819.2[P]. 2015-05-28.
LI C Y, ZHENG L. A method for detecting potassium, calcium, and magnesium content in plants: China invention patent, 201510280819.2[P]. 2015-05-28.
[24]
BUSSE J S, OZGEN S, PALTA J P. Influence of root zone calcium on subapical necrosis in potato shoot cultures: localization of injury at the tissue and cellular levels[J]. Journal of the American Society for Horticultural Science, 2008, 133(5): 653-662. DOI: 10.21273/JASHS.133.5.653.
[25]
DINDAS J, SCHERZER S, MRG R, et al. AUX1-mediated root hair auxin influx governs SCFTIR1/AFB-type Ca2+ signaling[J]. Nature Communications, 2018, 9(1): 1174. DOI: 10.1038/s41467-018-03582-5.
[26]
KIEBER J J, SCHALLER G E. Cytokinin signaling in plant development[J]. Development, 2018, 145(4): dev149344. DOI: 10.1242/dev.149344.
[27]
LI T, YAN A, BHATIA N, et al. Calcium signals are necessary to establish auxin transporter polarity in a plant stem cell niche[J]. Nature Communications, 2019, 10(1): 726. DOI: 10.1038/s41467-019-08575-6.
[28]
MATSCHI S, WERNER S, SCHULZE W X, et al. Function of calcium-dependent protein kinase CPK28 of Arabidopsis thaliana in plant stem elongation and vascular development[J]. The Plant journal: for cell and molecular biology, 2013, 73(6): 883-96. DOI: 10.1111/tpj.12090.
[29]
DU G, ZHAO Y, XIAO C, et al. Mechanism analysis of calcium nitrate application to induce gibberellin biosynthesis and signal transduction promoting stem elongation of Dendrobium officinale[J]. Industrial Crops and Products, 2023, 195(10): 116495. DOI: 10.1016/j.indcrop.2023.116495.
[30]
XIAO C, FANG Y, WANG S, et al. The alleviation of ammonium toxicity in plants[J]. Journal of Integrative Plant Biology, 2023, 65(6): 13467. DOI: 10.1111/jipb.13467.
[31]
范端阳, 尹美强, 温银元, 等. 硝铵氮源配比对谷子苗期生长及氮素利用的影响[J]. 作物杂志, 2023(1): 96-102.
FAN D Y, YIN M Q, WEN Y Y, et al. Effects of nitrate-ammonium ratio on seedling growth and nitrogen utilization in foxtail millet[J]. Crops, 2023(1): 96-102. DOI:10.16035/j.issn.1001-7283.2023.01.014.
[32]
LIN M, XIN D J, SHENG W S, et al. Differential responses of root growth to nutrition with different ammonium/nitrate ratios involve auxin distribution in two tobacco cultivars[J]. Journal of Integrative Agriculture, 2019, 18(12):13. DOI: 10.1016/S2095-3119(19)62595-5.
[33]
ZHANG X P, MA C X, SUN L R, et al. Roles and mechanisms of Ca2+ in regulating primary root growth of plants[J]. Plant Signaling and Behavior, 2020, 15(5): 1748283. DOI:10.1080/15592324.2020.1748283.
[34]
YANG T, POOVAIAH B W. Calcium/calmodulin-mediated signal network in plants[J]. Trends in Plant Science, 2003, 8(10): 505-512. DOI: 10.1016/j.tplants.2003.09.004.
[35]
BAZOT S, MIKOLA J, ROBIN C N. Defoliation-induced changes in carbon allocation and root soluble carbon concentration in field-grown lolium perenne plants: do they affect carbon availability, microbes and animal trophic groups in soil?[J]. Functional Ecology, 2005, 19(5): 886-896. DOI: 10.2307/3599351.
PDF(27874 KB)

Accesses

Citation

Detail

Sections
Recommended
The full text is translated into English by AI, aiming to facilitate reading and comprehension. The core content is subject to the explanation in Chinese.

/