Functional characterization of PjGRAS56, a transcription factor involved in shortened internode formation in Pseudosasa japonica var. tsutsumiana

LIU Shiying, JIANG Jiawen, GAO Zhipeng, WEI Qiang

JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2025, Vol. 49 ›› Issue (4) : 12-22.

PDF(17454 KB)
PDF(17454 KB)
JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2025, Vol. 49 ›› Issue (4) : 12-22. DOI: 10.12302/j.issn.1000-2006.202506004

Functional characterization of PjGRAS56, a transcription factor involved in shortened internode formation in Pseudosasa japonica var. tsutsumiana

Author information +
History +

Abstract

【Objective】Internode length is a crucial trait for bamboo industrial utilization. Pseudosasa japonica var. tsutsumiana is a stable dwarf mutant of P. japonica, characterized by shortened, flask-shaped internodes, making it an ideal material for studying internode growth in bamboos. Preliminary studies identified the GRAS transcription factor PjGRAS56 as a key candidate gene responsible for the shortened internode formation in P. japonica var. tsutsumianais. This study aims to elucidate the potential role of PjGRAS56 in bamboo internode development.【Method】We employed bioinformatics to analyze the sequence features of PjGRAS56, confocal laser scanning microscopy to observe its subcellular localization, a yeast transcription system to assess its transcriptional activation activity, transgenic techniques in rice and Arabidopsis to analyze phenotypes of PjGRAS56-overexpressing plants, transcriptome sequencing and qRT-PCR to examine gene expression changes, and hand-sectioning to measure internode cell length.【Result】PjGRAS56 localized to the nucleus and cytoplasm, and lacked transcriptional activation activity. It was significantly down-regulated in the division zone of P. japonica var. tsutsumianais internodes. Overexpression of PjGRAS56 in rice resulted in dwarfism, shortened internodes, reduced tillering, shorter panicles and awns, fewer grains, and reduced leaf angle; overexpression of it in Arabidopsis led to smaller leaves and shorter flower stalks. Although the cell length in internodes of PjGRAS56-overexpressing plants was similar to controls, the cell number was significantly reduced. Transcriptome sequencing and differential gene expression analysis revealed significant down-regulation of cell division-related genes in PjGRAS56-overexpressing plants.【Conclusion】PjGRAS56 is a putative negative regulator of internode growth in bamboo.

Key words

Pseudosasa japonica var. tsutsumiana / internode length / intercalary meristem / division zone / PjGRAS56

Cite this article

Download Citations
LIU Shiying , JIANG Jiawen , GAO Zhipeng , et al. Functional characterization of PjGRAS56, a transcription factor involved in shortened internode formation in Pseudosasa japonica var. tsutsumiana[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2025, 49(4): 12-22 https://doi.org/10.12302/j.issn.1000-2006.202506004

References

[1]
魏强, 郭琳, 陈铭, 等. 平安竹叶片缩小的细胞学观察[J]. 南京林业大学学报(自然科学版), 2019, 43(3):195-199.
WEI Q, GUO L, CHEN M, et al. Cytological study on the size reduction of leaf blade of Pseudosasa japonica var.tsusumiana[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2019, 43(3):195-199.DOI: 10.3969/j.issn.1000-2006.201710002.
[2]
林树燕, 丁雨龙. 平安竹抗旱生理指标的测定[J]. 林业科技开发, 2006(1):40-41.
LIN S Y, DING Y L. The physiological responds to drought stress of Pseudosasa japonica[J]. Journal of Forestry Engineering, 2006(1):40-41.DOI: 10.3969/j.issn.1000-8101.2006.01.013.
[3]
WEI Q, JIAO C, DING Y L, et al. Cellular and molecular characterizations of a slow-growth variant provide insights into the fast growth of bamboo[J]. Tree Physiology, 2018, 38(4):641-654.DOI: 10.1093/treephys/tpx129.
[4]
GAO Z P, GUO L, RAMAKRISHNAN M, et al. Cellular and molecular characterizations of the irregular internode division zone formation of a slow-growing bamboo variant[J]. Tree Physiology, 2022, 42(3):570-584.DOI: 10.1093/treephys/tpab129.
[5]
JIANG J W, GAO Z P, XIANG Y, et al. Characterization of anatomical features,developmental roadmaps,and key genes of bamboo leaf epidermis[J]. Physiologia Plantarum, 2022, 174(6):e13822.DOI: 10.1111/ppl.13822.
[6]
吴占清, 陈威, 赵展, 等. 玉米GRAS基因家族的全基因组鉴定及生物信息学分析[J]. 中国农业科技导报, 2024, 26(3):15-25.DOI:10.13304/j.nykjdb.2023.0551.
[7]
BOLLE C. The role of GRAS proteins in plant signal transduction and development[J]. Planta, 2004, 218(5):683-692.DOI: 10.1007/s00425-004-1203-z.
[8]
SUN X L, JONES W T, RIKKERINK E H A. GRAS proteins:the versatile roles of intrinsically disordered proteins in plant signalling[J]. Biochemical Journal, 2012, 442(1):1-12.DOI: 10.1042/BJ20111766.
[9]
WANG Y J, DENG D X. Molecular basis and evolutionary pattern of GA-GID1-DELLA regulatory module[J]. Molecular Genetics and Genomics, 2014, 289(1):1-9.DOI: 10.1007/s00438-013-0797-x.
[10]
HOU X L, LEE L Y C, XIA K F, et al. DELLAs modulate jasmonate signaling via competitive binding to JAZs[J]. Developmental Cell, 2010, 19(6):884-894.DOI: 10.1016/j.devcel.2010.10.024.
[11]
BOLLE C, KONCZ C, CHUA N H. PAT1,a new member of the GRAS family,is involved in phytochrome a signal transduction[J]. Genes & Development, 2000, 14(10):1269-1278.
[12]
HELARIUTTA Y, FUKAKI H, WYSOCKA-DILLER J, et al. The SHORT-ROOT gene controls radial patterning of the Arabidopsis root through radial signaling[J]. Cell, 2000, 101(5):555-567.DOI: 10.1016/S0092-8674(00)80865-X.
[13]
TANABE S, ONODERA H, HARA N, et al. The elicitor-responsive gene for a GRAS family protein,CIGR2,suppresses cell death in rice inoculated with rice blast fungus via activation of a heat shock transcription factor,OsHsf 23[J]. Bioscience,Biotechnology,and Biochemistry, 2016, 80(1):145-151.DOI: 10.1080/09168451.2015.1075866.
[14]
XU K, CHEN S J, LI T F, et al. OsGRAS23,a rice GRAS transcription factor gene,is involved in drought stress response through regulating expression of stress-responsive genes[J]. BMC Plant Biology, 2015,15:141.DOI: 10.1186/s12870-015-0532-3.
[15]
YAMAUCHI T, YOSHIOKA M, FUKAZAWA A, et al. An NADPH oxidase RBOH functions in rice roots during lysigenous aerenchyma formation under oxygen-deficient conditions[J]. The Plant Cell, 2017, 29(4):775-790.DOI: 10.1105/tpc.16.00976.
[16]
ZHANG C, LU W H, YANG Y, et al. OsYSL16 is required for preferential Cu distribution to floral organs in RiceFree[J]. Plant and Cell Physiology, 2018, 59(10):2039-2051.DOI: 10.1093/pcp/pcy124.
[17]
WANG X Y, ZHANG S X, DOU Y C, et al. Synergistic and independent actions of multiple terminal nucleotidyl transferases in the 3’tailing of small RNAs in Arabidopsis[J]. PLoS Genetics, 2015, 11(4):e1005091.DOI: 10.1371/journal.pgen.1005091.
[18]
SCHMITTGEN T D, LIVAK K J. Analyzing real-time PCR data by the comparative CT method[J]. Nature Protocols, 2008, 3(6):1101-1108.DOI: 10.1038/nprot.2008.73.
[19]
却枫, 刘庆楠, 查若飞, 等. 孝顺竹中笋箨衰老相关WRKY转录因子的鉴定与分析[J]. 南京林业大学学报(自然科学版), 2023, 47(6):113-123.
QUE F, LIU Q N, ZHA R F, et al. Identification and analysis of senescence related WRKYs in sheath of Bambusa multiplex[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2023, 47(6):113-123.DOI: 10.12302/j.issn.1000-2006.202206049.
[20]
HUANG J Y, REN H F, CHENG F, et al. Comprehensive genome-wide characterization of the GRAS gene family and their role in salt stress tolerance in Punica granatum L[J]. Horticulturae, 2025, 11(5):504.DOI: 10.3390/horticulturae11050504.
[21]
LI Q F, WANG C M, JIANG L, et al. An interaction between BZR1 and DELLAs mediates direct signaling crosstalk between brassinosteroids and gibberellins in Arabidopsis[J]. Science Signaling, 2012, 5(244):ra72.DOI: 10.1126/scisignal.2002908.
[22]
YE X L, YU X Y, LIU H C, et al. The regulatory role of DELLA protein DkGAI1 in persimmon dwarfism[J]. Plant Science, 2025,358:112560.DOI: 10.1016/j.plantsci.2025.112560.
[23]
ZHANG Z L, OGAWA M, FLEET C M, et al. Scarecrow-like 3 promotes gibberellin signaling by antagonizing master growth repressor DELLA in Arabidopsis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(5):2160-2165.DOI: 10.1073/pnas.1012232108.
[24]
ALABADÍ D, SUN T-P. Green revolution DELLA proteins:functional analysis and regulatory mechanisms[J]. Annual Review of Plant Biology, 2025,76:373-400.DOI: 10.1146/annurevarplant-053124-050732.
[25]
童红宁. 水稻矮化少分蘖基因DLT的克隆鉴定及其在油菜素内酯信号传导中的功能分析[D]. 北京: 中国科学院大学, 2010.
TONG H N. Cloning and identification of dwarf and less tillering gene DLT in rice and its function analysis in brassinolide signal transduction[D]. Beijing: University of Chinese Academy of Sciences, 2010.
[26]
苏强. GmFT1b/5b/3b基因调控大豆开花和生长发育的遗传效应分析[D]. 北京: 中国农业科学院, 2022.
SU Q. Genetic effect analysis of GmFT1b/5b/3b gene regulating soybean flowering and growth and development[D]. Beijing: Chinese Academy of Agricultural Sciences, 2022.
[27]
TONG H N, JIN Y, LIU W B, et al. DWARF AND LOW-TILLERING,a new member of the GRAS family,plays positive roles in brassinosteroid signaling in rice[J]. The Plant Journal, 2009, 58(5):803-816.DOI: 10.1111/j.1365-313X.2009.03825.x.
[28]
ZHANG X X, MENG W J, LIU D P, et al. Enhancing rice panicle branching and grain yield through tissue-specific brassinosteroid inhibition[J]. Science, 2024, 383(6687):eadk8838.DOI: 10.1126/science.adk8838.
[29]
TANG Y Y, LIU H H, GUO S Y, et al. OsmiR396d affects gibberellin and brassinosteroid signaling to regulate plant architecture in rice[J]. Plant Physiology, 2018, 176(1):946-959.DOI: 10.1104/pp.17.00964.
[30]
KUMAGAI E, HAMAOKA N, ARAKI T, et al. Dorsoventral asymmetry of photosynthesis and photoinhibition in flag leaves of two rice cultivars that differ in nitrogen response and leaf angle[J]. Physiologia Plantarum, 2014, 151(4):533-543.DOI: 10.1111/ppl.12145.
[31]
SONG Y J, NIU R F, YU H L, et al. OsSLA1 functions in leaf angle regulation by enhancing the interaction between OsBRI1 and OsBAK1 in rice[J]. The Plant Journal, 2022, 110(4):1111-1127.DOI: 10.1111/tpj.15727.
[32]
SAKAMOTO T, MORINAKA Y, OHNISHI T, et al. Erect leaves caused by brassinosteroid deficiency increase biomass production and grain yield in rice[J]. Nature Biotechnology, 2005, 24(1):105-109.DOI: 10.1038/nbt1173.
[33]
YUN C, MA W Z, FENG J, et al. Branching angles in the modulation of plant architecture:molecular mechanisms,dynamic regulation,and evolution[J]. Plant Communications, 2025, 6(4):101292.DOI: 10.1016/j.xplc.2025.101292.
[34]
杨建昌, 王朋, 刘立军, 等. 中籼水稻品种产量与株型演进特征研究[J]. 作物学报, 2006, 32(7):949-955.
YANG J C, WANG P, LIU L J, et al. Evolution characteristics of grain yield and plant type for mid-season indica rice cultivars[J]. Acta Agronomica Sinica, 2006, 32(7):949-955.
[35]
彭显龙, 董强, 张辰, 等. 不同土壤条件下秸秆还田量对土壤还原性物质及水稻生长的影响[J]. 中国水稻科学, 2024, 38(2):198-210.
PENG X L, DONG Q, ZHANG C, et al. Effects of straw return rate on soil reducing substances and rice growth under different soil conditions[J]. Chinese Journal of Rice Science, 2024, 38(2):198-210.DOI: 10.16819/j.1001-7216.2024.230404.
[36]
武志海, 徐克章, 赵颖君, 等. 吉林省47年来粳稻品种遗传改良过程中某些农艺性状的变化[J]. 中国水稻科学, 2007, 21(5):507-512.
WU Z H, XU K Z, ZHAO Y J, et al. Changes of some agronomic traits in Japonica rice varieties during forty-seven years of genetic improvement in Jilin Province,China[J]. Chinese Journal of Rice Science, 2007, 21(5):507-512.DOI: 10.16819/j.1001-7216.2007.05.011.
[37]
高洪儒, 杨传铭, 赵北平, 等. 黑龙江省五常优质稻区2008—2022年水稻育种趋势分析[J]. 中国稻米, 2025, 31(3):87-94.
GAO H R, YANG C M, ZHAO B P, et al. Analysis of rice breeding trends in 2008—2022 in the Wuchang high quality rice region of Heilongjiang Province[J]. China Rice, 2025, 31(3):87-94.
[38]
张耗, 谈桂露, 薛亚光, 等. 江苏省粳稻品种近60年演进过程中产量与形态生理特征的变化[J]. 作物学报, 2010, 36(1):133-140.
ZHANG H, TAN G L, XUE Y G, et al. Changes in grain yield and morphological and physiological characteristics during 60-year evolution of Japonica rice cultivars in Jiangsu Province,China[J]. Acta Agronomica Sinica, 2010, 36(1):133-140.
PDF(17454 KB)

Accesses

Citation

Detail

Sections
Recommended
The full text is translated into English by AI, aiming to facilitate reading and comprehension. The core content is subject to the explanation in Chinese.

/