Object-oriented classification of tropical forest

WANG Wenquan,CHEN Yongfu,LI Zhaochen,HONG Xiaojiang,LI Xiaocheng,HAN Wentao

JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2017, Vol. 41 ›› Issue (03) : 117-123.

PDF(3294499 KB)
PDF(3294499 KB)
JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2017, Vol. 41 ›› Issue (03) : 117-123. DOI: 10.3969/j.issn.1000-2006.201604040

Object-oriented classification of tropical forest

  • WANG Wenquan1,CHEN Yongfu1*,LI Zhaochen1,HONG Xiaojiang2,LI Xiaocheng2,HAN Wentao2
Author information +
History +

Abstract

【Objective】This study was conducted to improve tropical forests protection by assessing remote sensing-based classification technology based on remote sensing. 【Methods】Using an object-oriented classification method, tropical forests was extracted based on SPOT-6 high-resolution remote sensing images. Specifically, the estimation of scale parameter(ESP)multi-scale segmentation model, coupled with experts’ knowledge, was used to determine the optimal segmentation scale parameters. Through the analysis of the spectral, shape and texture features of the image objects, a reasonable set of these features was established. As a consequence, an object-oriented multi-scale classification method was created to map the distribution of tropical forests using classification rules. 【Results】The results showed that the proposed object-oriented multi-scale classification method had the ability to extract information about the distribution of tropical forests. This method had an overall classification accuracy of 84.46%, which was an improvement over that of single-scale classification. Moreover, less time was needed and accuracy was improved with this method, compared with the traditional segmentation method. 【Conclusion】Our object-oriented multi-scale classification method provides a solid technical reference for mapping tropical forests mapping, which is fundamental for monitoring and protection of tropical forests resources.

Cite this article

Download Citations
WANG Wenquan,CHEN Yongfu,LI Zhaochen,HONG Xiaojiang,LI Xiaocheng,HAN Wentao. Object-oriented classification of tropical forest[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2017, 41(03): 117-123 https://doi.org/10.3969/j.issn.1000-2006.201604040

References

[1] 程燕,岳彩荣.面向对象遥感图像森林分类研究进展[J].林业调查规划,2012,37(4):19-23. DOI:10.3969/j.issn.1671-3168.2012.04.005. CHENG Y, YUE C R. Study progress on forest classification of object-oriented remote sensing images [J]. Forest Inventory and Planning, 2012,37(4):19-23.
[2] 张连华,庞勇,岳彩荣,等.TM影像决策树分类中的影响因素研究[J].林业科学研究,2014,27(1):1-5. DOI:10.13275/j.cnki.lykxyj.2014.01.001. ZHAGN L H, PANG Y, YUE C R, et al. Factorsaffecting decision tree classification method over TM image [J]. Forest Research, 2014, 27(1):1-5.
[3] 沈明霞,何瑞银,丛静华.基于ETM+遥感影像的森林植被信息提取方法研究[J].南京林业大学学报(自然科学版),2007,31(6):113-116.DOI:10.3969/j/issn.1000-2006.2007.06.027. SHEN M X, HE R Y, CONG J H. Methodological study of information extraction of forest using ETM+ and remote sensing image [J].Journal of Nanjing Forestry University(Natural Sciences Edition), 2007, 31(6):113-116.
[4] 黎良财,张晓丽, 郭航.基于SVM方法的SPOT-5影像植被分类[J].东北林业大学学报,2014,42(1):51-56. DOI:10.13759/j.cnki.dlxb.2014.01.012. LI L C, ZHANG X L,GUO H. Vegetation extraction in SPOT5 image with SVM method[J].Journal of Northeast Forestry University, 2014,42(1):51-56.
[5] 马友平.基于变差函数纹理和BP人工神经网络的QuickBird影像分类研究[J].遥感技术与应用,2010,25(4):540-546. MA Y P. The Classification research of quickBird image based on variogram texture and BP artificial neural networks [J].Remote Sensing Technology and Application, 2010, 25(4):540-546.
[6] 何诚,董志海,张思玉,等.基于决策树系统的遥感植被分类技术[J].测绘科学, 2014, 39(1):83-86. HE C, DONG Z H,ZHANG S Y, et al. Vegetation classification technology of hyperspectral remote sensing based on decision tree tool[J].Science of Surveying and Mapping, 2014, 39(1):83-86.
[7] 李春干,邵国凡.面向对象的SPOT5图像森林分类[J].林业科学,2010,46(8):130-139. DOI: 10.11707/j.1001-7488.201008020. LI C G, SHAO G F. Object-oriented classification of forest cover using SPOT5 imagery [J].Scientia Silvae Sinicae, 2010,46(8):130-139.
[8] 崔一娇,朱琳,赵力娟.基于面向对象及光谱特征的植被信息提取与分析[J].生态学报,2013,33(3):867-875. DOI: 10.5846 /stxb201204110510. CUI Y J, ZHU L, ZHAO L J. Abstraction and analysis of vegetation information based on object-oriented and spectra features [J].Acta Ecologica Sinica, 2013, 33(3):867-875.
[9] BAATA M,SCHPE A. Object-oriented and multi-scale image analysis in semantic network[C]// Proc of the 2nd International Symposium on Operationalization of Remote Sensing. Enschede, Netherlands, 1999.
[10 ]MYINT S W, GOBER P, BRAZEL A, et al. Per-pixel vs. object-based classification of urban land cover extraction using high spatial resolution imagery [J]. Remote Sensing of Environment, 2011, 115(5):1145-1161. DOI:10.1016/j.rse.2010.12.017.
[11] 周小成,庄海东,等.面向小班对象的森林资源变化遥感监测方法——以福建省厦门市为例[J].资源科学,2013,35(8):17-18. ZHOU X C, ZHUANG H D, et al. Amethod to extract forest cover change by object-oriented classification [J]. Resources Science, 2013,35(8):17-1718.
[12] 曹宝,秦其明,马海建,等.面向对象方法在SPOT5遥感图像分类中的应用——以北京市海淀区为例[J].地理与地理信息科学,2006,22(2):46-49. CAO B, QIN Q M, MA H J, et al. Application of object-oriented approach to SPOT5 image classification: a case study in Haidian District, Beijing City [J]. Geography and Geo-Information Science, 2006, 22(2):46-49.
[13] 孙晓艳,杜华强,韩凝,等.面向对象多尺度分割的SPOT5影像毛竹林专题信息提取[J].林业科学,2013,49(10):80-87. DOI: 10.11707/j.1001-7488.20131013. SUN X Y, DU H Q,HAN N, et al. Multi-scale segmentation, object-based extraction of moso bamboo forest from SPOT5 imagery[J]. Scientia Silvae Sinicae, 2013, 49(10):80-87.
[14] 郭亚鸽,于信芳,江东,等.面向对象的森林植被图像识别分类方法[J].地球信息科学学报,2012,14(4):514-522. DOI:10.3724/SP.J.1047.2012.00514. GUO Y H, YU X F, JIAGN D, et al. Study on forest classification based on object oriented techniques[J]. Journal of Geo-Information Science, 2012, 14(4):514-522.
[15] MATHIEU R, ARYAL J, CHONG A K. Object-based classification of IKONOS imagery for mapping large-scale vegetation communities in urban areas [J]. Sensors, 2007, 7(11):2860-2880.
[16] 姚成,赵晋陵.基于时序HJ-CCD影像的区域尺度水稻提取方法研究[J].南京农业大学学报,2015,38(6):1023-1029.DOI:10.7685/j.issn.1000-2030.2015.06.023. YAO C, ZHAO J L. Identifying the spatial-temporal characteristics of paddy rice using time-series HJ-CCD imagery[J]. Journal of Nanjing Agricultural University, 2015, 38(6): 1023-1029.
[17] 王荣,江东,韩惠,等.高分辨率遥感影像天然林与人工林植被覆盖信息提取[J].资源科学,2013,35(4):868-874. WANG R,JIANG D,HAN H, et al. Extractingnatural and artificial forest information based on high resolution remote sensing data[J]. Resources Science, 2013, 35(4):868-874.
[18] 李肇晨,罗微,陈永富,等.海南霸王岭陆均松空间分布格局及其与微生境异质性的关系[J].生态学报, 2015, 35(8):2545-2554. DOI:10.5846/stxb201406061165. LI Z C, LUO W, CHEN Y F, et al. The relationships between microhabitat heterogeneity and the spatial distribution of Dacrydium pectinatum in Bawangling, Hainan Island[J]. Acta Ecologica Sinica, 2015, 35(8):2545-2554.
[19] 宋晓阳,姜小三,江东,等.基于面向对象的高分影像分类研究[J].遥感技术与应用, 2015,30(1):99-105. DOI:10.11873/j.issn.1004-0323.2015.1.0099. SONG X Y, JIANG X S, JIANG D, et al. Object-orientedclassification of high-resolution remote sensing image [J]. Remote Sensing Technology and Application, 2015,30(1):99-105.
[20] 沈占锋,骆剑承,胡晓东,等.高分辨率遥感影像多尺度均值漂移分割算法研究[J].武汉大学学报(信息科学版), 2010, 35(3):313-316. DOI:10.13203/j.whugis2010.03.009 SHEN Z F, LUO J C, HU X D, et al. Amean shift multi-scale segmentation for high-resolution remote sensing images [J]. Geomatics and Information Science of Wuhan University, 2010, 35(3):313-316.
[21] 刘兆祎,李鑫慧,沈润平,等.高分辨率遥感图像分割的最优尺度选择[J].计算机工程与应用, 2014,50(6):144-147. DOI:10.3778/j.issn.1002-8331.1206-0094. LIU Z W, LI X H, SHEN R P, et al. Selection of the best segmentation scale in high-resolution image segmentation [J]. Computer Engineering and Applications, 2014,50(6):144-147.
[22] Drgu 瘙 塅 L, CSILLIK O, EISANK C, et al. Automated parameterisation for multi-scale image segmentation on multiple layers[J]. ISPRS Journal of Photogrammetry & Remote Sensing Official Publication of the International Society for Photogrammetry & Remote Sensing, 2014, 88:119-127.
[23] 王东广,肖鹏峰,宋晓群,等.结合纹理信息的高分辨率遥感图像变化检测方法[J].国土资源遥感,2012(4):76-81. DOI:10.6046/gtzyyg.2012.04.13. WANG G D, XIAO P F, SONG X Q, et al. Changedetection method for high resolution remote sensing image in association with textural and spectral information[J]. Remote Sensing for Land & Resources, 2012(4):76-81.
PDF(3294499 KB)

Accesses

Citation

Detail

Sections
Recommended
The full text is translated into English by AI, aiming to facilitate reading and comprehension. The core content is subject to the explanation in Chinese.

/