Modelling the vertical variation in the number of second order branches of Pinus koraiensis plantation trees through GLMM

MIAO Zheng, DONG Lihu, LI Fengri, BAI Dongxue, WANG Jiahui

JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2017, Vol. 41 ›› Issue (04) : 121-128.

PDF(2014533 KB)
PDF(2014533 KB)
JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2017, Vol. 41 ›› Issue (04) : 121-128. DOI: 10.3969/j.issn.1000-2006.201604066

Modelling the vertical variation in the number of second order branches of Pinus koraiensis plantation trees through GLMM

  • MIAO Zheng, DONG Lihu, LI Fengri*, BAI Dongxue, WANG Jiahui
Author information +
History +

Abstract

【Objective】Establish a method for estimating the spatial distribution of branch and foliage biomass within individual Korean pine(Pinus koraiensis)crowns,the aim of the present study was to develop a predictive model for the vertical variation in number of second-order branches in farmed Korean pines.【Method】Using count data from a total of 955 branches sampled from 65 Korean pines in the Mengjiagang Forest Farm, the number of second-order branches was modeled as a function of the relative distance into the crown(RDINC), crown length(CL), diameter(DBH)and height/diameter ratio(HDR),based on a previously developed model. Subject-specific variation was captured using tree-level random coefficients, and the auto correlation among the branches sampled in consecutive whorls of the same crown were taken into account using a first-order auto regressive correlation structure AR(1) in the generalized linear mixed models. The predictive accuracy of the random-coefficient models were compared with that of the fixed-effects model using common methods for validating forest models.【Result】All of the converged models with random coefficients provided better fits than the fixed-effect model,and the model with four random coefficients(intercept, lnRDINC, R2DINC and CL)and the first-order auto regressive correlation structure AR(1) proved to be the optimum mixed model. In the fixed-effect part of this model,the parameter estimates for lnRDINC,CL and DBH were positive, whereas those for R2DINC and HDR were negative.Consequently there was a peak in the number of predicted second-order branches as RDINC increased. The Pseudo-R2, RMSE,MAE and MAE% of the optimal model were 0.896 1,5.15, 3.83, and 23.25%, respectively.【Conclusion】The generalized linear mixed models with random coefficients had greater precision than the previously developed fixed-effect model since they delineated both the mean trend of vertical variation in number of second-order branches and tree-specific deviation from the mean trend.

Cite this article

Download Citations
MIAO Zheng, DONG Lihu, LI Fengri, BAI Dongxue, WANG Jiahui. Modelling the vertical variation in the number of second order branches of Pinus koraiensis plantation trees through GLMM[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2017, 41(04): 121-128 https://doi.org/10.3969/j.issn.1000-2006.201604066

References

[1] 张小全, 徐德应, 赵茂盛. 林冠结构、辐射传输与冠层光合作用研究综述[J]. 林业科学研究,1999,12(4):411-421.DOI:10. 13275/j.cnki.lykxyj.1999.04.014. ZHANG X Q, XU D Y, ZHAO M S. Review on forest canopy structure, radiation transfer and canopy photosynthesis[J]. Forest Research, 1999,12(4): 411-421.
[2] 张智昌. 落叶松人工林枝条生长与节子大小预测模型的研究[D]. 哈尔滨:东北林业大学, 2010. ZHANG Z C. Predicting models of branch growth and knot properties for larch plantation [D]. Harbin: Northeast Forestry University, 2010.
[3] NEWTON M, LACHENBRUCH B, ROBBINS J M,et al. Branch diameter and longevity linked to plantation spacing and rectangularity in young Douglas-fir [J]. Fuel & Energy Abstracts, 2012, 266:75-82. DOI:10.1016/j.foreco.2011.11.009.
[4] 郑杨, 董利虎, 李凤日. 黑龙江省红松人工林枝条分布数量模拟[J]. 应用生态学报, 2016, 27(7):2172-2180. DOI:10.13287/j.1001-9332.201607.21. ZHENG Y, DONG L H, LI F R. Branch quantity distribution simulation for Pinus koraiensis plantation in Heilongjiang Province, China[J]. Chinese Journal of Applied Ecology, 2016, 27(7):2172-2180.
[5] DAVIDIAN M, GILTINAN D. Nonlinear models for repeated measurement data: an overview and update [J]. Journal of Agricultural Biological & Environmental Statistics, 2003, 8(4):387-419. DOI: 10.1198/1085711032697.
[6] FANG Z, BAILEY R L, SHIVER B D. A multivariate simultaneous prediction system for stand growth and yield with fixed and random effects [J]. Forest Science, 2001, 47(4): 550-562.
[7] 李春明, 唐守正. 基于非线性混合模型的落叶松云冷杉林分断面积模型[J].林业科学,2010,46(7):106-113. DOI:10.11707//j.1001-7488.2100716. LI C M, TANG S Z. The basal area model of mixed stands of Larix olgensis,Abies nephrolepis and Picea jezoensis based on nonlinear mixed model [J]. Scientia Silvae Sinicae, 2010,46(7): 106-113.
[8] 杨志雄, 袁岱菁. 非线性混合效应模型和广义线性模型拟合随机效应logistic回归的应用比较[J]. 中国卫生统计, 2011(3):321-323. DOI:10.3969/j.issn.1002-3674.2011.03.038.
[9] HEIN S, MäKINEN H, YUE C, et al. Modelling branch characteristics of Norway spruce from wide spacings in Germany [J]. Forest Ecology and Management, 2007, 242(2-3):155-164. DOI:10.1016/j.foreco.2007.01.014.
[10] NEMEC A F L, GOUDIE J W, PARISH R. A Gamma-Poisson model for vertical location and frequency of buds on lodgepole pine(Pinus contorta)leaders [J]. Canadian Journal of Forest Research, 2010, 40(10):2049-2058. DOI:10.1016/j.foreco.2007.01.0140
[11] KINT V, HEIN S, CAMPIOLI M, et al. Modelling self-pruning and branch attributes for young Quercus robur L. and Fagus sylvatica L. trees [J]. Forest Ecology and Management, 2010, 260(11):2023-2034. DOI:10.1016/j.foreco.2010.09.008.
[12] NEMEC A F L, PARISH R, GOUDIE J W. Modelling number, vertical distribution, and size of live branches on coniferous tree species in British Columbia [J]. Canadian Journal of Forest Research, 2012, 42(42): 1072-1090. DOI:10.1139/X2012-06.
[13] SATTLER D F, COMEAU P G, ACHIM A. Branch models for white spruce (Picea glauca(Moench)Voss)in naturally regenerated stands [J]. Forest Ecology and Management, 2014, 325: 74-89. DOI:http://dx.doi.org/10.1016/j.foreco.2014.03.051.
[14] 贺宝龙. 广义线性混合模型在精算分析中的应用[D]. 武汉:武汉理工大学, 2008. HE B L. The application of generalized linear mix models in actuarial analysis [D]. Wuhan: Wuhan University of Technology, 2008.
[15] 陈丹萍. 广义线性混合效应模型(GLMM)与复杂抽样的logistics回归模型在分层整群抽样数据分析中的比较[D]. 上海:复旦大学, 2010. CHEN D P. Comparison of generalized linear mixed models(GLMM)and logistic regression in complex sampling for analyzing data obtain from stratified cluster random sampling [D]. Shanghai: Fudan University, 2010.
[16] WOLFINFER R, O'CONNELL M. Generalized linear mixed model: a pseudo-likelihood approach [J].Journal of Statistical Computation and Simulation, 1993, 48(3):233-243. DOI: 10.1080/00949659308811554.
[17] 杨肇, 朱凯旋. Logistic回归分析中的过度离散现象及纠正[J].中国卫生统计, 2003(4):48-49. DOI:10.3969/j.issn.1002-3674.2003.04.016.
[18] MAGUIRE D A, MOEUR M, BENNETT W S. Models for describing basal diameter and vertical distribution of primary branches in young Douglas-fir [J]. Forest Ecology and Management, 1994, 63(1):23-55.
[19] ISHII H, MCDOWELL N. Age-related development of crown structure in coastal Douglas-fir trees [J]. Forest Ecology and Management, 2002, 169(3):257-270.
[20] WEISKITTEL A R, MAGUIRE D A, MONSERUD R A. Response of branch growth and mortality to silvicultural treatments in coastal Douglas-fir planations: implications for predicting tree growth [J]. Forest Ecology and Management, 2007, 251(3):182-194. DOI:10.1016/j.foreco.2007.06.007.
[21] MAKINEN H, OJANSUU R, SAIRANEN P, et al. Predicting branch characteristics of Norway spruce(Picea abies(L.)Karst.)from simple stand and tree measurements [J]. The Journal of the Society of Foresters of Great Britain, 2003, 76(5):525-546.
[22] 康萌萌. 广义线性混合模型及其SAS实现[J]. 统计教育, 2009(10):50-54. KANG M M. Generalized linear mixed models and implementation with SAS [J] Statistical Thinktank, 2009(10):50-54.
PDF(2014533 KB)

Accesses

Citation

Detail

Sections
Recommended
The full text is translated into English by AI, aiming to facilitate reading and comprehension. The core content is subject to the explanation in Chinese.

/