Effects of simulated nitrogen deposition on soil microbial biomass carbon and nitrogen in a mixed broadleaf Korean pine forest

SONG Lei, LIN Youwei, JIN Guangze

JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2017, Vol. 41 ›› Issue (05) : 7-12.

PDF(1461065 KB)
PDF(1461065 KB)
JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2017, Vol. 41 ›› Issue (05) : 7-12. DOI: 10.3969/j.issn.1000-2006.201607039

Effects of simulated nitrogen deposition on soil microbial biomass carbon and nitrogen in a mixed broadleaf Korean pine forest

  • SONG Lei, LIN Youwei, JIN Guangze
Author information +
History +

Abstract

【Objective】This study explored the effects of increasing nitrogen deposition on soil microorganisms in a mixed broadleaf Korean pine(Pinus koraiensis)forest.【Method】A simulated nitrogen deposition experiment was performed in a mixed broadleaf Korean pine forest. Nitrogen deposition levels were contacted as control(N0, 0 kg/(hm2·a)), low N(N1, 30 kg/(hm2·a)), medium N(N2, 60 kg/(hm2·a)), and high N(N3, 120 kg/(hm2·a)). Soil samples were collected from 0-10 cm and ≥10-20 cm soil layers monthly from mid-May to mid-September in 2014, and soil microbial biomass carbon(SMBC)and soil microbial biomass nitrogen(SMBN)were measured.【Result】First, the simulated nitrogen deposition did not influence the vertical changes of SMBC, SMBN, or SMBC/SMBN; seasonal changes of SMBC and SMBN between the four treatments plots during the growing season showed a unimodal curve; and the seasonal dynamics of SMBC/SMBN were obvious and their ranges were different. The 0-10 cm soil layer in the N0 treatment plot had the smallest range(2.83-6.97). Second, the simulated nitrogen deposition significantly affected the SMBC in June and August in the 0-10 cm layer and the SMBC/SMBN of May, June, and August in the 0-10 cm layer(P<0.05). However, the simulated nitrogen deposition did not significantly affected seasonal averages of SMBC, SMBN and SMBC/SMBN.【Conclusion】There was a obvious effect of simulated nitrogen deposition on soil microbial biomass in the mixed broadleaf Korean pine forest in some specific months. However, to find a distinct effect throughout the whole growing season would require longer simulated nitrogen deposition.

Cite this article

Download Citations
SONG Lei, LIN Youwei, JIN Guangze. Effects of simulated nitrogen deposition on soil microbial biomass carbon and nitrogen in a mixed broadleaf Korean pine forest[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2017, 41(05): 7-12 https://doi.org/10.3969/j.issn.1000-2006.201607039

References

[1] MAAROUFI N I, NORDIN A, HASSELQUIST N J, et al. Anthropogenic nitrogen deposition enhances carbon sequestration in boreal soils[J]. Global Change Biology, 2015, 21(8): 3169-3180. DOI: 10.1111/gcb.12904.
[2] ARENS S J T, SULLIVAN P F, WELKER J M. Nonlinear responses to nitrogen and strong interactions with nitrogen and phosphorus additions drastically alter the structure and function of a high arctic ecosystem[J]. Journal of Geophysical Research, 2008, 113(G03S09): 335-342. DOI: 10.1029/2007JG000508.
[3] WRIGHT R F, ROELOFS J G M, BREDEMEIER M, et al. Nitrex-response of coniferous forest ecosystems to experimentally changed deposition of nitrogen[J]. Forest Ecology and Management, 1995, 71(1-2): 163-169. DOI: 10.1016/0378-1127(94)06093-X.
[4] LIU X, ZHANG Y, HAN W, et al. Enhanced nitrogen deposition over China[J]. Nature, 2013, 494(7438): 459-462. DOI: 10.1038/nature11917.
[5] GURMESA G A, LU X, GUNDERSEN P, et al. High retention of 15N-labeled nitrogen deposition in a nitrogen saturated old-growth tropical forest[J]. Global Change Biology, 2016, 22(11): 3608-3620. DOI: 10.1111/gcb.13327.
[6] VALLIERE J M, ALLEN E B. Interactive effects of nitrogen deposition and drought-stress on plant-soil feedbacks of Artemisia californica seedlings[J]. Plant and Soil, 2016, 403(1): 277-290. DOI: 10.1007/s11104-015-2776-y.
[7] DELGADO-BAQUERIZO M, MAESTRE F T, REICH P B, et al. Carbon content and climate variability drive global soil bacterial diversity patterns[J]. Ecological Monographs, 2016, 86(3): 373-390. DOI: 10.1002/ecm.1216.
[8] MOORE J M, KLOSE S, TABATABAI M A. Soil microbial biomass carbon and nitrogen as affected by cropping systems[J]. Biology and Fertility of Soils, 2000, 31(3): 200-210. DOI: 10.1007/s003740050646.
[9] LEBAUER D S, TRESEDER K K. Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed[J]. Ecology, 2008, 89(2): 371-379. DOI: 10.1890/06-2057.1.
[10] PARTON W, SILVER W L, BURKE I C, et al. Global-scale similarities in nitrogen release patterns during long-term decomposition[J]. Science, 2007, 315(5810): 361-364. DOI: 10.1126/science.1134853.
[11] PERAKIS S S, SINKHORN E R. Biogeochemistry of a temperate forest nitrogen gradient[J]. Ecology, 2011, 92(7): 1481-1491. DOI: 10.1890/10-1642.1.
[12] MO J M, ZHANG W, ZHU W X, et al. Nitrogen addition reduces soil respiration in a mature tropical forest in southern China[J]. Global Change Biology, 2008, 14(2): 403-412. DOI: 10.1111/j.1365-2486.2007.01503.x.
[13] LÜ Y, WANG C, JIA Y, et al. Responses of soil microbial biomass and enzymatic activities to different forms of organic nitrogen deposition in the subtropical forests in east China[J]. Ecological Research, 2013, 28(3): 447-457. DOI:10.1007/s11284-013-1033-1.
[14] 刘爽, 王传宽. 五种温带森林土壤微生物生物量碳氮的时空格局[J]. 生态学报, 2010, 30(12): 3135-3143. LIU S, WANG C K. Spatio-temporal patterns of soil microbial biomass carbon and nitrogen in five temperate forest ecosystems[J]. Acta Ecologica Einica, 2010, 30(12): 3135-3143.
[15] 刘纯, 刘延坤, 金光泽. 小兴安岭6种森林类型土壤微生物量的季节变化特征[J]. 生态学报, 2014, 34(2): 451-459. DOI: 10.5846/stxb201304050608. LIU C, LIU Y K, JIN G Z. Seasonal dynamics of soil microbial biomass in six forest types in Xiaoxing'an Mountains, China[J]. Acta Ecologica Sinica, 2014, 34(2): 451-459.
[16] LIPSON D A, SCHADT C W, SCHMIDT S K. Changes in soil microbial community structure and function in an alpine dry meadow following spring snow melt[J]. Microbal Ecollgy, 2002, 43(3): 307-314. DOI:10.1007/s00248-001-1057-x.
[17] LI Y, WANG J, PAN F, et al. Soil nitrogen availability alters rhizodeposition carbon flux into the soil microbial community[J]. Journal of Soils and Sediments, 2016, 16(5): 1472-1480. DOI:10.1007/s11368-015-1337-6.
[18] HAICHAR F Z, MAROL C, BERGE O, et al. Plant host habitat and root exudates shape soil bacterial community structure[J]. Isme Journal, 2008, 2(12): 1221-1230. DOI:10.1038/ismej.2008.80.
[19] CASTELLANO M J, MUELLER K E, OLK D C, et al. Integrating plant litter quality, soil organic matter stabilization, and the carbon saturation concept[J]. Global Change Biology, 2015, 21(9): 3200-3209. DOI:10.1111/gcb.12982.
[20] LI H, XU Z, YANG S, et al. Responses of soil bacterial communities to nitrogen deposition and precipitation increment are closely linked with aboveground community variation[J]. Microbal Ecology, 2016, 71(4): 974-989. DOI:10.1007/s00248-016-0730-z.
[21] GALLO M E, LAUBER C L, CABANISS S E, et al. Soil organic matter and litter chemistry response to experimental N deposition in northern temperate deciduous forest ecosystems[J]. Global Change Biology, 2005, 11(9): 1514-1521. DOI:10.1111/j.1365-2486.2005.01001.x.
[22] 彭赛,张雅坤, 葛之葳, 等. 氮沉降对微生物分解森林地上凋落物过程的影响[J]. 南京林业大学学报(自然科学版), 2016, 40(1): 1-7. DOI: 10.3969/j.issn.1000-2006.2016.01.001. PENG S, ZHANG Y K, GE Z W, et al. Effects of deposition on litter decomposition by microorganisms in forests[J]. Journal of Nanjing Forestry University(Natural Sciences Edition), 2016, 40(1): 1-7.
[23] 毛宏蕊, 陈金玲, 金光泽. 氮添加对典型阔叶红松林凋落叶分解及养分释放的影响[J]. 北京林业大学学报, 2016, 38(3): 21-31. DOI: 10.13332/j.1000-1522.20150139. MAO H R, CHEN J L, JIN G Z. Effects of nitrogen addition on litter decomposition and nutrient release in typical mixed broadleaved-Korean pine forest[J]. Journal of Beijing Forestry University, 2016, 38(3): 21-31.
[24] SUN T, DONG L L, MAO Z J. Simulated atmospheric nitrogen deposition alters decomposition of ephemeral roots[J]. Ecosystems, 2015, 18(7): 1240-1252. DOI: 10.1007/s10021-015-9895-4.
[25] PHILLIPS R P, FAHEY T J. Fertilization effects on fineroot biomass, rhizosphere microbes and respiratory fluxes in hardwood forest soils[J]. New Phytologist, 2007, 176(3): 655-664. DOI:10.1111/j.1469-8137.2007.02204.x.
[26] CANFIELD D E, GLAZER A N, FALKOWSKI P G. The evolution and future of Earth's nitrogen cycle[J]. Science, 2010, 330(6001): 192-196. DOI:10.1126/science.1186120.
[27] REDDING M R, SHORTEN P R, LEWIS R, et al. Soil N availability, rather than N deposition, controls indirect N2O emissions[J]. Soil Biology and Biochemistry, 2016, 95: 288-298. DOI:10.1016/j.soilbio.2016.01.002.
[28] CHEN D, LAN Z, HU S, et al. Effects of nitrogen enrichment on belowground communities in grassland: relative role of soil nitrogen availability vs. soil acidification[J]. Soil Biology and Biochemistry, 2015, 89: 99-108. DOI:10.1016/j.soilbio.2015.06.028.
[29] 赵超, 彭赛, 阮宏华, 等. 氮沉降对土壤微生物影响的研究进展[J]. 南京林业大学学报(自然科学版), 2015, 39(3): 149-155. DOI: 10.3969/j.issn.1000-2006.2015.03.027. ZHAO C, PENG S, RUAN H H, et al. Effects of nitrogen deposition on soil microbes[J]. Journal of Nanjing Forestry University(Natural Sciences Edition), 2015, 39(3): 149-155.
[30] CLEVELAND C C, LIPTZIN D. C:N:P stoichiometry in soil: is there a “Redfield ratio” for the microbial biomass?[J]. Biogeochemistry, 2007, 85(3): 235-252. DOI:10.1007/s10533-007-9132-0.
[31] CAREY C J, DOVE N C, BEMAN J M, et al. Meta-analysis reveals ammonia-oxidizing bacteria respond more strongly to nitrogen addition than ammonia-oxidizing archaea[J]. Soil Biology and Biochemistry, 2016, 99: 158-166. DOI:10.1016/j.soilbio.2016.05.014.
[32] CHEN D, WANG Y, LAN Z, et al. Biotic community shifts explain the contrasting responses of microbial and root respiration to experimental soil acidification[J]. Soil Biology and Biochemistry, 2015, 90: 139-147. DOI:10.1016/j.soilbio.2015.08.009.
[33] 马慧君,张雅坤,许文欢,等. 模拟氮沉降对杨树人工林土壤微生物群落碳源利用类型的影响[J].南京林业大学学报(自然科学版),2017,41(5):1-6. DOI:10.3969/j.issn.1000-2006.201606014. MA H J, ZHANG Y K, XU W H, et al. Effects of nitrogen deposition on soil bacterial community C-source metabolism of poplar plantation[J]. Journal of Nanjing Forestry University(Natural Sciences Edition), 2017,41(5):1-6.
[34] 赵玉涛, 韩士杰, 李雪峰, 等. 模拟氮沉降增加对土壤微生物量的影响[J]. 东北林业大学学报, 2009, 37(1): 49-51. DOI: 10.3969/j.issn.1000-5382.2009.01.018. ZHAO Y T, HAN S J, LI X F, et al. Effect of simulated nitrogen deposition on soil microbial biomass[J]. Journal of Northeast Forestry University, 2009, 37(1): 49-51.
[35] ABER J D, NADELHOFFER K J, STEUDLER P, et al. Nitrogen saturation in northern forest ecosystems[J]. BioScience, 1989, 39(6): 378-386. DOI:10.2307/1311067.
[36] ELSER J, KYLE M, MAKINO W, et al. Ecological stoichiometry in the microbial food web: a test of the light: nutrient hypothesis[J]. Aquatic Microbial Ecology, 2003, 31(1): 49-65. DOI:10.3354/ame031049.
[37] PEñUELAS J, SARDANS J, RIVAS-UBACH A, et al. The human-induced imbalance between C, N and P in Earth's life system[J]. Global Change Biology, 2012, 18(1): 3-6. DOI: 10.1111/j.1365-2486.2011.02568.x.
PDF(1461065 KB)

Accesses

Citation

Detail

Sections
Recommended
The full text is translated into English by AI, aiming to facilitate reading and comprehension. The core content is subject to the explanation in Chinese.

/