Advance in functional research of secreted protein and CAZymes in plant pathogenic filamentous fungus

HAN Changzhi, XU Xi

JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2017, Vol. 41 ›› Issue (05) : 152-160.

PDF(7086629 KB)
PDF(7086629 KB)
JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2017, Vol. 41 ›› Issue (05) : 152-160. DOI: 10.3969/j.issn.1000-2006.201607045

Advance in functional research of secreted protein and CAZymes in plant pathogenic filamentous fungus

  • HAN Changzhi, XU Xi
Author information +
History +

Abstract

To clear undertaking the future direction of CAZymes of filamentous fungi, the basic characteristics, classification and prediction methods, functions and other aspects of secreted protein and CAZymes of filamentous fungus were reviewed. Based on the previous reported literature about secreted protein and CAZymes of plant pathogenic filamentous fungus, the secreted protein and CAZymes were comprehensive analyzed by the method of bibliometric analysis, SMART conserved domain, motif analysis. And more specifically research on secreted protein in China, while research reports for CAZymes was less, at the same time, the function of most of secreted protein and CAZymes have not yet been fully analyzed during the pathogen infection. The prediction method of the secreted protein and CAZymes was basically based on bioinformatics analysis, and the protein with true function was screened to validate based on the evidence of biological experiment. Therefore, we need to further improve the prediction method of bioinformatics analysis tools or algorithms on the secreted protein and CAZymes, and to verify the protein with true function by carrying out biological experiments. And the commonness and characteristics were identified by the comparative analysis of the number and function of CAZymes between plant pathogens and microbial antagonist. In addition, the classification of CAZymes in filamentous fungi needs further refinement, and comparative analysis of the distribution of different subfamilies, which advance functional studies, provide an important theoretical basis.

Cite this article

Download Citations
HAN Changzhi, XU Xi. Advance in functional research of secreted protein and CAZymes in plant pathogenic filamentous fungus[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2017, 41(05): 152-160 https://doi.org/10.3969/j.issn.1000-2006.201607045

References

[1] 韩长志. 植物病原丝状真菌G蛋白偶联受体的研究进展[J]. 微生物学通报,2015, 42(2): 374-383. DOI:10.13344/j.microbiol.china.140473. HAN C Z.Advance in functional research of G protein-coupled receptorsin phytopathogenic filamentous fungi[J]. Microbiology China,2015, 42(2): 374-383.
[2] 厉晓东, 卢建平, 李海娇, 等. 丝状真菌的细胞凋亡[J]. 微生物学通报,2011, 38(2): 242-249.DOI:10.13344/j.microbiol.china.2011.02.007. LI X D, LU J P, LI H J, et al.Apoptosis in filamentous fungi [J]. Microbiology China,2011, 38(2): 242-249.
[3] 李娟, 杨金奎, 梁连铭, 等. 丝状真菌遗传转化系统研究进展[J]. 江西农业大学学报,2006, 28(4): 516-520.DOI:10.13836/j.jjau.2006115. LI J, YANG J K, LIANG L M, et al.Advance in the research on genetic transformation system of filamentous fungi[J]. ActaAgriculturaeUniversitatisJiangxiensis,2006, 28(4): 516-520.
[4] 张田, 唐克轩. 丝状真菌的遗传工程研究进展[J]. 上海交通大学学报(农业科学版),2010, 28(5): 480-486.DOI:10.3969/j.issn.1671-9964.2010.05.017. ZHANG T, TANG K X.Progress on genetic engineering of filamentous fungi [J]. Journal of Shanghai Jiaotong Uuiversty(Agricultural Science),2010, 28(5): 480-486.
[5] 许杨, 涂追. 丝状真菌基因敲除技术研究进展[J]. 食品与生物技术学报,2007, 26(1): 120-126.DOI:10.3321/j.issn:1673-1689.2007.01.025. XU Y, TU Z.Application and progress of filamentous fungi gene targeting [J]. Journal of Food Science and Biotechnology,2007, 26(1): 120-126.
[6] 李彩红, 李志芳, 冯自力, 等. 农杆菌介导的基因敲除技术在丝状真菌基因功能研究中的应用[J]. 棉花学报,2013, 25(3): 262-268.DOI:10.3969/j.issn.1002-7807.2013.03.011. LI C H, LI Z F, FENG Z L, et al.Applications of gene knockout by ATMT in filamentous fungus functional genomics [J]. Cotton Science,2013, 25(3): 262-268.
[7] 刘静, 李中元, 王军娥, 等. 丝状真菌产孢机制及其相关基因研究进展[J]. 贵州农业科学,2009, 37(4): 81-84.DOI:10.3969/j.issn.1001-3601.2009.04.031. LIU J, LI Z Y, WANG J E, et al. Research progress of sporulation mechanism and related genes in filamentous fungi [J]. Guizhou Agricultural Sciences,2009, 37(4): 81-84.
[8] 林涛, 黄建忠. 丝状真菌启动子研究进展[J]. 安徽农业科学,2013, 41(7): 2862-2863,2865.DOI:10.13989/j.cnki.0517-6611.2013.07.112. LIN T, HUANG J Z.Research advance on promoters for heterologous gene expression in filamentous fungi [J]. Journal of Anhui Agricultural Sciences, 2013, 41(7): 2862-2863, 2865.
[9] 赵勇, 王云川, 蒋德伟, 等. 真菌 G 蛋白信号调控蛋白的功能研究进展[J]. 微生物学通报,2014, 41(4): 712-718.DOI:10.13344/j.microbiol.china.130317. ZHAO Y, WANG Y C, JIANG D W, et al.Advances in functional research of RGS proteins in fungi [J]. Microbiology China,2014, 41(4): 712-718.
[10] 朱小彬, 朱霞, 于一帆, 等. G 蛋白信号转导调节蛋白(RGS)研究进展[J]. 中国农学通报,2014, 30(6): 248-253. ZHU X B, ZHU X, YU Y F, et al.Advances of research on regulators of G protein signaling(RGS Proteins)[J]. Chinese Agricultural Science Bulletin,2014, 30(6): 248-253.
[11] 李利, 陈莎, 毛涛, 等. 丝状真菌G蛋白信号途径的研究进展[J]. 微生物学通报,2013, 40(8): 1493-1507.DOI:10.13344/j.microbiol.china.2013.08.023. LI L, CHEN S, MAO T, et al. Heterotrimeric G-protein signaling in filamentous fungi: a review [J]. Microbiology China,2013, 40(8): 1493-1507.
[12] 陈相永, 陈捷胤, 肖红利, 等. 植物病原真菌寄生性与分泌蛋白组CAZymes的比较分析[J]. 植物病理学报,2014, 44(2): 163-172.DOI:10.13926/j.cnki.apps.2014.02.003. CHEN X Y, CHEN J Y, XIAO H L, et al. The comparative analysis of secreted CAZymes in phytopathogenic fungi with differernt lifestyle [J]. Acta Phytopathologica Sinica,2014, 44(2): 163-172.
[13] VAN DEN BRINK J, DE VRIES R P. Fungal enzyme sets for plant polysaccharide degradation[J]. Appl Microbiol Biotechnol,2011, 91(6): 1477-1492.DOI: 10.1007/s00253-011-3473-2.
[14] 陈继圣, 郑士琴, 郑武, 等. 全基因组预测稻瘟菌的分泌蛋白[J]. 中国农业科学,2006, 39(12): 2474-2482.DOI:10.3321/j.issn:0578-1752.2006.12.011. CHEN J S, ZHENG S Q, ZHENG W, et al.Prediction for secreted proteins from Magnaporthe grisea genome [J]. Scientia Agricultura Sinica,2006, 39(12): 2474-2482.
[15] BENDTSEN J D, NIELSEN H, von HEIJNE G, et al. Improved prediction of signal peptides: SignalP 3.0[J]. Journal of molecular biology,2004, 340(4): 783-795.DOI: 10.1016/j.jmb.2004.05.028.
[16] EMANUELSSON O, BRUNAK S, von HEIJNE G, et al. Locating proteins in the cell using TargetP, Signal P and related tools[J]. Nature Protocols,2007, 2(4): 953-971.DOI: 10.1038/nprot.2007.131.
[17] SONNHAMMER E L, von HEIJNE G, KROGH A,et al. A hidden Markov model for predicting transmembrane helices in protein sequences[R]. Procedings of ISMB,1998, 6: 175-182.
[18] EMANUELSSON O, NIELSEN H, BRUNAK S, et al. Predicting subcellular localization of proteins based on their N-terminal amino acid sequence[J]. Journal of molecular biology,2000, 300(4): 1005-1016.DOI: 10.1006/jmbi.2000.3903.
[19] EISENHABER B, SCHNEIDER G, WILDPANER M, et al. A sensitive predictor for potential GPI lipid modification sites in fungal protein sequences and its application to genome-wide studies for Aspergillus nidulans, Candida albicans, Neurospora crassa, Saccharomyces cerevisiae and Schizosaccharomyces pombe[J]. Journal of Molecular Biology,2004, 337(2): 243-253.DOI: 10.1016/j.jmb.2004.01.025.
[20] 聂燕芳, 周淦, 黄嘉瑶, 等. 尖孢镰刀菌甜瓜专化型基因组规模分泌蛋白的预测与分析[J]. 华中农业大学学报,2016, 35(3): 24-29.DOI:10.13300/j.cnki.hnlkxb.2016.03.005. NIE Y F, ZHOU J, HUANG J Y, et al.Genome-scale prediction and analysis of secreted proteins of Fusarium oxysporum f. sp. melonis [J]. Journal of Huazhong Agricultural University,2016, 35(3): 24-29.
[21] 韩长志. 全基因组预测禾谷炭疽菌的分泌蛋白[J]. 生物技术,2014, 24(2): 36-41. HAN C Z.Prediction for secreted proteins from Colletotrichum graminicola genome [J]. Biotechonoly,2014, 24(2): 36-41.
[22] 韩长志. 全基因组预测希金斯炭疽菌的候选效应分子[J]. 生物技术,2015, 25(6): 546-551.DOI:10.16519/j.cnki.1004-311x.2015.06.0108. HAN C Z.Prediction for candidate effectors from Colletotrichum higginsanum genome [J]. Biotechonoly,2015, 25(6): 546-551.
[23] DO AMARAL A M, ANTONIW J, RUDD J J, et al. Defining the predicted protein secretome of the fungal wheat leaf pathogen Mycosphaerella graminicola[J]. PLoS One,2012, 7(12): e49904.DOI: 10.1371/journal.pone.0049904.
[24] WYMELENBERG A V, SABAT G, MARTINEZ D, et al. The Phanerochaete chrysosporium secretome: database predictions and initial mass spectrometry peptide identifications in cellulose-grown medium[J]. Journal of Biotechnology,2005, 118(1): 17-34.DOI: 10.1016/j.jbiotec.2005.03.010.
[25] 杨静, 李成云, 王云月, 等. 酿酒酵母分泌蛋白组的计算机分析[J]. 中国农业科学,2005, 38(3): 516-522.DOI:10.3321/j.issn:0578-1752.2005.03.014. YANG J, LI C Y, WANG Y Y, et al.Computational analysis of signal peptide-dependent secreted proteins in Saccaromyces cerevisiae [J]. Scientia Agricultura Sinica,2005, 38(3): 516-522.
[26] 于钦亮, 马莉, 刘林, 等. 禾谷镰刀菌基因组中含寄主靶向模体分泌蛋白功能的初步分析[J]. 生物技术通报,2008(1): 160-165, 180.DOI:10.13560/j.cnki.biotech.bull.1985.2008.01.031. YU Q L, MA L, LIU L, et al. Primary analysis of host-targeting-motif harbored secreted proteins in genome of Fusarium graminearum[J]. Biotechnology Bulletin, 2008(1): 160-165, 180.
[27] 周晓罡, 李成云, 赵之伟, 等. 粗糙脉孢菌基因组分泌蛋白的初步分析[J]. 遗传,2006, 38(2): 200-207.DOI:10.16288/j.yczz.2006.02.014. ZHOU X G, LI C Y, ZHAO Z W, et al.Analysis of the secreted proteins encoded by genes in gennome of filamental fungus(Neurospora crassa)[J]. Hereditas(Beijing),2006, 38(2): 200-207.
[28] 田李, 陈捷胤, 陈相永, 等. 大丽轮枝菌(Verticillium dahliae VdLs.17)分泌组预测及分析[J]. 中国农业科学,2011, 44(15): 3142-3153. TIAN L, CHEN J Y, CHEN X Y, et al.Prediction and analysis of Verticillium dahliae Vd Ls.17 secretome [J]. Scientia Agricultura Sinica,2011, 44(15): 3142-3153.
[29] 任楠, 李俊星, 沈徐凯. 米曲霉分泌组的预测及分析[J]. 安徽农业科学,2010, 38(25): 13622-13625.DOI:10.13989/j.cnki.0517-6611.2010.25.046. REN N, LI J X, SHEN X K.Prediction and analysis of secretome in Aspergillus oryzae [J]. Journal of Anhui Agricultural Sciences, 2010, 38(25): 13622-13625.
[30] 唐雯, 严明. 里氏木霉(Trichoderma reesei)分泌组的预测及分析[J]. 微生物学报,2008, 48(4): 473-479.DOI:10.13343/j.cnki.wsxb.2008.04.005. TANG W, YAN M.Prediction and analysis of the secreteomic in Trichoderma reesei [J]. Acta Microbiologica Sinica,2008, 48(4): 473-479.
[31] HORTHON P, PARK K J, OBAYASHI T, et al. WoLF PSORT: protein localization predictor[J]. Nucleic Acids Res,2007, 35(Web Server): 585-587.DOI: 10.1093/nar/gkm259.
[32] KALL L, KROGH A, SONNHAMMER E L. Advantages of combined transmembrane topology and signal peptide prediction:the Phobius web server[J]. Nucleic Acids Res,2007, 35(Web Server): 429-432.DOI: 10.1093/nar/gkm256.
[33] WINNENBURG R, BALDWIN T K, URBAN M, et al. PHI-base: a new database for pathogen host interactions[J]. Nucleic Acids Res,2006, 34: 459-464.DOI: 10.1093/nar/gkj047.
[34] WINNENBURG R, URBAN M, BEACHAM A, et al. PHI-base update: additions to the pathogen-host interaction database[J]. Nucleic Acids Research,2008, 36(suppl 1): 572-576.DOI: 10.1093/nar/gkm858.
[35] BALDWIN T K, WINNENBURG R, URBAN M, et al. The pathogen-host interactions database(PHI-base)provides insights into generic and novel themes of pathogenicity[J]. Mol Plant Microbe Interact,2006, 19(12): 1451-1462.DOI: 10.1094/MPMI-19-1451.
[36] GAO Q, JIN K, YING S H, et al. Genome sequencing and comparative transcriptomics of the model entomopathogenic fungi Metarhizium anisopliae and M. acridum[J]. PLoS Genet,2011, 7(1): e1001264.DOI: 10.1371/journal.pgen.1001264.
[37] GAO S, LI Y, GAO J, et al. Genome sequence and virulence variation-related transcriptome profiles of Curvularia lunata, an important maize pathogenic fungus[J]. BMC genomics,2014, 15(1): 1.DOI: 10.1186/1471-2164-15-627.
[38] BOUTET E, LIEBERHERR D, TOGNOLLI M, et al. UniProtKB/Swiss-Prot, the manually annotated section of the UniProt knowledge base: how to use the entry view[J]. Methods Mol Biol,2016, 1374: 23-54.DOI: 10.1007/978-1-4939-3167-5_2.
[39] BOURNE Y, HENRISSAT B. Glycoside hydrolases and glycosyltransferases: families and functional modules[J]. Current Opinion in Structural Biology,2001, 11(5): 593-600.
[40] CAMPBELL J A, DAVIES G J, BULONE V, et al. A classification of nucleotide-diphospho-sugar glycosyltransferases based on amino acid sequence similarities[J]. Biochem J,1997, 326:929-939.
[41] LOMBARD V, BERNARD T, RANCUREL C, et al. A hierarchical classification of polysaccharide lyases for glycogenomics[J]. Biochem J,2010, 432(3): 437-444.DOI: 10.1042/BJ20101185.
[42] LEVASSEUR A, DRULA E, LOMBARD V, et al. Expansion of the enzymatic repertoire of the CAZy database to integrate auxiliary redox enzymes[J]. Biotechnol Biofuels,2013, 6(1): 41.DOI: 10.1186/1754-6834-6-41.
[43] BORASTON A B, BOLAM D N, GILBERT H J, et al. Carbohydrate-binding modules: fine-tuning polysaccharide recognition[J]. Biochem J,2004, 382(3): 769-781.DOI: 10.1042/BJ20040892.
[44] CANTAREL B L, COUTINHO PM, RANCUREL C, et al. The carbohydrate-active enzymes database(CAZy): an expert resource for glycogenomics[J]. Nucleic Acids Research,2009, 37(suppl 1): 233-238.DOI: 10.1093/nar/gkn663.
[45] 韩长志. 基于全基因组测序的禾谷炭疽菌中碳水化合物酶类蛋白预测[J]. 河南师范大学学报(自然科学版), 2016, 44(4): 118-124. HAN C Z. Prediction for CAZymes protein from Colletotrichum graminicola genome[J]. Journal of Henan Normal University(Natural Science Edition), 2016, 44(4): 118-124.
[46] LOMBARD V, GOLACONDA RAMULU H, DRULA E, et al. The carbohydrate-active enzymes database(CAZy)in 2013[J]. Nucleic Acids Res,2014, 42(Database): 490-495.DOI: 10.1093/nar/gkt1178.
[47] ALTSCHUL S F, MADDEN T L, SCHAFFER A A, et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs[J]. Nucleic Acids Res,1997, 25(17): 3389-3402.
[48] 柳少燕, 陈捷胤, 李蕾, 等. 拮抗菌与病原菌碳水化合物酶类比较分析[J]. 基因组学与应用生物学,2013, 32(1): 97-104. LIU S Y, CHEN J Y, LI L, et al.Comparative analysis of the carbohydrate-active enzymes between antagonistic microorganism and plant pathogen [J]. Genomics and Applied Biology,2013, 32(1): 97-104.
[49] 陈捷胤, 柳少燕, 李蕾, 等. 棉花病原菌碳水化合物酶类注释和比较分析[J]. 中国农业科学,2013, 46(3): 496-506.DOI:10.3864/j.issn.0578-1752.2013.03.006. LIU S Y, CHEN J Y, LI L, et al.Annotation and comparative analysis of the carbohydrate-active enzymes in cotton pathogen [J]. Scientia Agricultura Sinica,2013, 46(3): 496-506.
[50] PARK B H, KARPINETS T V, SYED M H, et al. CAZymes analysis toolkit(CAT): web service for searching and analyzing carbohydrate-active enzymes in a newly sequenced organism using CAZy database[J]. Glycobiology,2010, 20(12): 1574-1584.DOI: 10.1093/glycob/cwq106.
[51] 任向荣. 禾谷丝核菌转录组中糖类活性酶基因组成和表达分析研究[D]. 南京:南京农业大学, 2013. REN X R.The composition and expression of carbohydrate-active enzyme genes of Rhizoctonia cerealis transcriptome[D]. Nanjing:Nanjing Agricultural University, 2013.
[52] MARTINEZ D, BERKA R M, HENRISSAT B, et al. Genome sequencing and analysis of the biomass-degrading fungus Trichoderma reesei(syn. Hypocrea jecorina)[J]. Nat Biotechnol,2008, 26(5): 553-560.DOI: 10.1038/nbt1403.
[53] KUBICEK C P, HERRERA-ESTRELLA A, SEIDL-SEIBOTH V, et al. Comparative genome sequence analysis underscores mycoparasitism as the ancestral life style of Trichoderma[J]. Genome biology,2011, 12(4): 40.DOI: 10.1186/gb-2011-12-4-r40.
[54] O'CONNELL R J, THON M R, HACQUARD S, et al. Lifestyle transitions in plant pathogenic Colletotrichum fungi deciphered by genome and transcriptome analyses[J]. Nat Genet,2012, 44(9): 1060-1065.DOI: 10.1038/ng.2372.
[55] YIN Y, MAO X, YANG J, et al. dbCAN: a web resource for automated carbohydrate-active enzyme annotation[J]. Nucleic Acids Res,2012, 40: 445-451.DOI: 10.1093/nar/gks479.
[56] PETERSEN T N, BRUNAK S, VON HEIJNE G, et al. SignalP 4.0: discriminating signal peptides from transmembrane regions[J]. Nat Methods,2011, 8(10): 785-786.DOI: 10.1038/nmeth.1701.
[57] LETUNIC I, DOERKS T, BORK P. SMART 7: recent updates to the protein domain annotation resource[J]. Nucleic Acids Research,2012, 40(1): 302-305.DOI: 10.1093/nar/gkr931.
[58] OSPINA-GIRALDO M D, GRIFFITH J G, LAIRD E W, et al. The CAZyome of PHYTOPHTHORA spp.: A comprehensive analysis of the gene complement coding for carbohydrate-active enzymes in species of the genus Phytophthora[J]. Bmc Genomics,2010, 11(1): 1.DOI: 10.1186/1471-2164-11-525.
[59] TAKAHASHI M, TAKAHASHI H, NAKANO Y, et al. Characterization of a cellobiohydrolase(MoCel6A)produced by Magnaporthe oryzae[J]. Applied and Environmental Microbiology,2010, 76(19): 6583-6590.DOI: 10.1128/AEM.00618-10.
[60] PELLOUX J, RUSTERUCCI C, MELLEROWICZ E J. New insights into pectin methylesterase structure and function[J]. Trends in Plant Science,2007, 12(6): 267-277.DOI: 10.1016/j.tplants.2007.04.001.
[61] KEMEN E, JONES J D. Obligate biotroph parasitism: can we link genomes to lifestyles?[J]. Trends in Plant Science,2012, 17(8): 448-457.DOI: 10.1016/j.tplants.2012.04.005.
[62] KÄMPER J, KAHMANN R, BÖLKER M, et al. Insights from the genome of the biotrophic fungal plant pathogen Ustilago maydis[J]. Nature,2006, 444(7115): 97-101.DOI: 10.1038/nature05248.
[63] MUELLER O, KAHMANN R, AGUILAR G, et al. The secretome of the maize pathogen USTILAGO MAYDIS[J]. Fungal Genetics and Biology,2008, 45: S63-S70.DOI: 10.1016/j.fgb.2008.03.012.
[64] KLOSTERMAN S J, SUBBARAO K V, KANG S, et al. Comparative genomics yields insights into niche adaptation of plant vascular wilt pathogens[J]. PLoS Pathog,2011, 7(7): e1002137.DOI: 10.1371/journal.ppat.1002137.
[65] LEVESQUE C A, BROUWER H, CANO L, et al. Genome sequence of the necrotrophic plant pathogen Pythium ultimum reveals original pathogenicity mechanisms and effector repertoire[J]. Genome Biol,2010, 11(7): R73.DOI: 10.1186/gb-2010-11-7-r73.
[66] HANE J K, LOWE R G, SOLOMON P S, et al. Dothideomycete plant interactions illuminated by genome sequencing and EST analysis of the wheat pathogen Stagonospora nodorum[J]. Plant Cell,2007, 19(11): 3347-3368.DOI: 10.1105/tpc.107.052829.
[67] ELLWOOD S R, LIU Z, SYME R A, et al. A first genome assembly of the barley fungal pathogen Pyrenophora teres f. teres[J]. Genome Biol,2010, 11(11): R109.DOI: 10.1186/gb-2010-11-11-r109.
[68] HEINZELMAN P, KOMOR R, KANAAN A, et al. Efficient screening of fungal cellobiohydrolase class I enzymes for thermos tabilizing sequence blocks by SCHEMA structure-guided recombination[J]. Protein Engineering Design and Selection,2010: gzq063.DOI: 10.1093/protein/gzq063.
[69] MISAS-VILLAMIL J C, VAN DER HOORN R A. Enzyme-inhibitor interactions at the plant-pathogen interface[J]. Current opinion in plant biology,2008, 11(4): 380-388.DOI: 10.1016/j.pbi.2008.04.007.
[70] BEAUGRAND J, CHAMBAT G, WONG V W, et al. Impact and efficiency of GH10 and GH11 thermostable endoxylanases on wheat bran and alkali-extractable arabinoxylans[J]. Carbohydrate Research,2004, 339(15): 2529-2540.DOI: 10.1016/j.carres.2004.08.012.
[71] MARTIN F, AERTS A, AHREN D,et al. The genome of Laccaria bicolor provides insights into mycorrhizal symbiosis[J]. Nature,2008, 452(7183): 88-92.DOI: 10.1038/nature06556.
[72] SPROCKETT D D, PIONTKIVSKA H, BLACKWOOD C B. Evolutionary analysis of glycosyl hydrolase family 28(GH28)suggests lineage-specific expansions in necrotrophic fungal pathogens[J]. Gene,2011, 479(1/2): 29-36.DOI: 10.1016/j.gene.2011.02.009.
[73] 韩长志. 植物病原卵菌RxLR效应基因功能研究进展[J]. 北方园艺,2014(5): 188-193. HAN C Z.Research advance on functional effect of gene plant pathogenic oomycete [J]. Northen Horicultural,2014(5): 188-193.
[74] MA Z, SONG T, ZHU L, et al. A Phytophthora sojae glycoside hydrolase 12 protein Is a major virulence factor during soybean infection and is recognized as a PAMP[J]. The Plant Cell,2015: tpc. 15.00390.DOI: 10.1105/tpc.15.00390.
[75] SCHMIDT S M, PANSTRUGA R. Pathogenomics of fungal plant parasites: what have we learnt about pathogenesis?[J]. Curr Opin Plant Biol,2011, 14(4): 392-399.DOI: 10.1016/j.pbi.2011.03.006.
[76] 孙瑞艳. 中国南方地区木霉菌资源收集、鉴定与生防功能评价研究[D]. 上海:上海交通大学, 2013. SUN R Y.Resource collection, identification and biocontrol evaluation of trichoderma isolated from southern China[D]. Shanghai:Shanghai Jiao Tong University, 2013.
PDF(7086629 KB)

Accesses

Citation

Detail

Sections
Recommended
The full text is translated into English by AI, aiming to facilitate reading and comprehension. The core content is subject to the explanation in Chinese.

/