Optimization of mixture proportions of sea silt-construction wastes with lightweight soil

ZHAO Xiaoqing, ZHAO Chen, ZHANG Zhendong, ZONG Zhongling, LI Mingdong

JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2017, Vol. 41 ›› Issue (05) : 121-127.

PDF(1608674 KB)
PDF(1608674 KB)
JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2017, Vol. 41 ›› Issue (05) : 121-127. DOI: 10.3969/j.issn.1000-2006.201611016

Optimization of mixture proportions of sea silt-construction wastes with lightweight soil

  • ZHAO Xiaoqing1,2, ZHAO Chen3, ZHANG Zhendong2, ZONG Zhongling1,2, LI Mingdong2
Author information +
History +

Abstract

【Objective】To reduce the settlement of the foundations in dredged sea silt, light treatment was adopted, through preparing sea silt-construction waste mixed lightweight soil with the characteristics of lightweight and high-strength. 【Method】The final mixture took dredged sea silt as raw soil, cement as curing agent and light construction waste as light material. The optimum mixture ratio was determined by examining the influence of the compositions of the mixture on the density and strength of the final material. Meanwhile, taking the lightweight, high-strength, and economic requirements of the final material into consideration, the ideal ratio for mixing lightweight soil to cement and the water stability of the resulting mixture were determined.【Results】The cement component had very little influence on the density of the final material. The lightweight construction waste component had a more significant effect on the density of the mixture, which decreased with increasing amounts of lightweight construction waste. Both the cement and the lightweight construction waste components influenced the unconfined compression strength of the mixture. When the amount of the lightweight construction waste component was kept constant, the strength of the mixture increased with increasing amount of cement. Conversely, the strength of the mixture increased initially with increasing amount of the lightweight construction waste and then decreased, leading to the peak strength value. 【Conclusion】Different raw soil, curing agent and lightweight materials all affected the physical and mechanical properties of the mixture. In practical engineering applications, if the composition of the mixture changed, it is necessary to verify the practical applicability of this formula.

Cite this article

Download Citations
ZHAO Xiaoqing, ZHAO Chen, ZHANG Zhendong, ZONG Zhongling, LI Mingdong. Optimization of mixture proportions of sea silt-construction wastes with lightweight soil[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2017, 41(05): 121-127 https://doi.org/10.3969/j.issn.1000-2006.201611016

References

[1] GAO Y F, WANG S M, CHEN C B. A united deformation-strength framework for Light weight sand-EPS beads soil(LSES)under cyclic loading [J]. Soil Dynamics and Earthquake Engineering, 2011, 31(8): 1144-1153. DOI:10.1016/j.soildyn.2011.04.002.
[2] HAI VIET VO, DAE-WOOK P. Lightweight treated soil as a potential sustainable pavement material [J]. Journal of Performance of Constructed Facilities, 2016, 30(1):1-7. DOI:10.1061/(ASCE)CF.1943-5509.0000720.
[3] 朱伟, 姬凤玲, 李明东,等. 轻质土密度、强度与材料组成的关系研究[J]. 岩土力学, 2007,28(7):1411-1414.DOI: 10.3969/j.issn.1000-7598.2007.07.024. ZHU W, JI F L, LI M D, et al. Relationships among density, strength and materials of lightweight treated soil [J]. Yantu Lixue/Rock and Soil Mechanics, 2007, 28(7):1411-1414.
[4] 沙玲,王国才,金菲力,等. 淤泥再生混合轻质土强度特性试验研究[J]. 南京理工大学学报,2013,37(3):441-446.DOI:10.3969/j.issn.1005-9830.2013.03.021. SHA L, WANG G C, JIN F L, et al. Experimental study on strength properties of mixed lightweight soil from recycled sludge[J]. Journal of Nanjing University of Science and Technology, 2013,37(3):441-446.
[5] 金菲力. 淤泥再生混合轻质土工程特性的试验研究[D].杭州:浙江工业大学,2012. JIN F L. Experimental study on the engineering properties of lightweight soil using recycled sludge[D]. Hangzhou:Zhejiang University of Technology, 2012.
[6] 林斌,张友谊,杨琪,等. 基于正交设计的气泡混合轻质土承载比试验研究[J]. 公路,2016,61(9):108-111. LIN B, ZHANG Y Y, YANG Q, et al. Test and research on the bearing ratio of bubble mixed light soil based on orthogonal design [J]. Highway, 2016,61(9):108-111.
[7] CHAIRAT T, PANICH V, SUKSUN H. Mix design charts for lightweight cellular cemented Bangkok clay [J]. Applied Clay Science, 2015(104): 318-323. DOI:10.1016/j.clay.2014.12.012.
[8] KIM T H, KIM T H, KANG G C. Performance evaluation of road embankment constructed using lightweight soils on an unimproved soft soil layer [J]. Engineering Geology, 2013,27(160): 34-43. DOI:10.1016/j.enggeo.2013.03.024.
[9] HOU T S. Prescription formula of foamed particles in lightweight soil [J]. Geotechnical and Geological Engineering, 2015,33(1): 153-160.DOI: 10.1007/s10706-014-9814-z.
[10] MARRADI A, PINORI U, BETTI G. The use of lightweight materials in road embankment construction original research article [J]. Procedia-Social and Behavioral Sciences, 2012(53): 1000-1009. DOI:10.1016/j.sbspro.2012.09.949.
[11] 赵晓晴,赵尘,李明东,等. 海淤建筑废料混合轻质土的需水性[J]. 南京林业大学学报(自然科学版),2013,37(3):152-156. ZHAO X Q, ZHAO C, LI M D, et al. Water requirement of sea silt construction wastes mixed lightweight soil [J]. Journal ofNanjing Forestry University(Natural Sciences Edition), 2013, 37(3):152-156. DOI:10.3969/j.jssn.1000-2006.2013.03.027.
[12] 朱平锋,计亦奇.人造轻细集料表观密度及吸水率测试方法的探讨[J]. 粉煤灰, 2004, 16(6): 42-44.DOI:10.3969/j.issn.1007-046X.2004.06.017. ZHU P F, JI Y Q. Probe into apparent density and water absorption test Method of man-made lightweight aggregates[J]. Coal Ash, 2004, 16(6): 42-44.
[13] LEE F A. The chemistry of cement and concrete [M].NewYork:Hodder Arnold,1970.
[14] 中华人民共和国行业标准.JTJ E40-2007 公路土工试验规程[S].北京:人民交通出版社,2007.
[15] 汤怡新,刘汉龙,朱伟. 水泥固化土工程特性试验研究[J]. 岩土工程学报, 2000, 22(5): 549-554.DOI:10.3321/j.issn:1000-4548.2000.05.008. TANG Y X, LIU H L, ZHU W. Study on engineering properties of cement-stabilized soil[J]. Chinese Journal of Geotechnical Engineering, 2000, 22(5): 549-554.
[16] 刘楷,李仁民,杜延军,等. 气泡混合轻质土干湿循环和硫酸钠耐久性试验研究[J]. 岩土力学,2015,36(S1):362-366.DOI:10.16285/j.rsm.2015.S1.062. LIU K, LI R M, DU Y J, et al. A durability experimental study of lightweight soil subjected to wetting-drying cycles and sodium sulfate soaking [J]. Rock and Soil Mechanics, 2015,36(S1):362-366.
[17]章灿林,黄俭才,熊永松,等. 不同原料土掺量的气泡轻质土耐久性研究[J]. 武汉理工大学学报,2014, 36(8):32-36. DOI:10.3963/j.issn.1671-4431.2014.08.006. ZHANG C L, HUANG J C, XIONG Y S, et al. Durability of foamed cement banking with raw soil [J]. Journal of Wuhan University of Technology, 2014, 36(8):32-36.
PDF(1608674 KB)

Accesses

Citation

Detail

Sections
Recommended
The full text is translated into English by AI, aiming to facilitate reading and comprehension. The core content is subject to the explanation in Chinese.

/