Separation analysis and mixed genetic analysis of phenotypic traits in F1 progenies of tree peony

ZHANG Lin, GUO Lili, GUO Dalong, HOU Xiaogai

JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2018, Vol. 42 ›› Issue (06) : 51-60.

PDF(3246985 KB)
PDF(3246985 KB)
JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2018, Vol. 42 ›› Issue (06) : 51-60. DOI: 10.3969/j.issn.1000-2006.201712034

Separation analysis and mixed genetic analysis of phenotypic traits in F1 progenies of tree peony

  • ZHANG Lin1, GUO Lili1, GUO Dalong2, HOU Xiaogai1*
Author information +
History +

Abstract

【Objective】The understanding of heterosis and genetic analysis of main phenotypic traits will provide a feasible guidance for tree peony breeding. 【Method】In this study, twenty phenotypic traits of F1 progeny obtained from the cross of Paeonia ostii ‘Feng Dan’ and Paeonia suffruticosa ‘Xin Riyuejin’ were investigated in 2014 and 2015. In addition, correlation analysis and mixed genetic analysis were conducted on these phenotypic data. 【Result】 The results of heterosis analysis showed that 20 phenotypic traits were separated broadly among F1 plants. The variation coefficient varied from 11.03% to 63.49%. Except for the traits of the flower height, petal width, petal length and pod height, the mid-parent heterotic values of the remaining 16 traits showed a significant difference at 0.01 level. Correlation analysis showed a significant positive correlation among the remaining 18 traits, except for the traits of petal length and pod height. Mixed genetic analysis revealed that the traits of plant height, crown width, shoot number, fruit stalk length, flower diameter, flowering duration, pod diameter and pod height were controlled by minor-polygene. The traits of shoot length, flower number, flower height, petal number, petal width, follicle number per pod, and per pod seed weight were dominated by two pairs of additive-dominant-epistatic major genes. For other traits, leaf length was controlled by two pairs of equally additive major genes, petal length was controlled by two pairs of equally dominant major genes, leaf width and per pod seed number were controlled by a pair of additive-dominant major genes, and per pod weight was controlled by two pairs of additive-dominant major genes. 【Conclusion】All 20 phenotypic traits showed heterosis and transgressive segregation, and some of them were controlled by major genes. These results provide a theoretical basis for further study on quantitative trait locus(QTL)analysis and molecular marker-assisted tree peony breeding.

Cite this article

Download Citations
ZHANG Lin, GUO Lili, GUO Dalong, HOU Xiaogai. Separation analysis and mixed genetic analysis of phenotypic traits in F1 progenies of tree peony[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2018, 42(06): 51-60 https://doi.org/10.3969/j.issn.1000-2006.201712034

References


[1] CAI C F,CHENG F Y,WU J,et al. The first high-density genetic map construction in tree peony(Paeonia Sect. Moutan)using genotyping by specific locus amplified fragment sequencing[J]. PLoS One,2015,10(5):e01285821. DOI: 10.1371/journal.pone.0128584.
[2] 刘传娇,王顺利,薛璟祺,等.牡丹开花调控转录因子基因PrSOC1 的克隆与表达分析[J]. 园艺学报,2014,41(11):2259-2267. DOI: 10.16420/j.issn.0513-353x.2014.11.013.
LIU C J,WANG S L,XUE J Q,et al. Molecular cloning and expression analysis of the flowering-regulating transcription factor PrSOC1 gene in tree peony[J]. Acta Horticulturae Sinica,2014,41(11):2259-2267.
[3] 杨德翠,郑国生. 牡丹病程相关蛋白1表达载体的构建及遗传转化[J]. 植物生理学报,2013,49(11):1267-1272. DOI: 10.13592/j.cnki.ppj.2013.11.016.
YANG D C,ZHENG G S. Expression vector construction and genetic transformation of pathogenesis-related protein 1 of Paeonia suffruicosa[J]. Plant Physiology Journal,2013,49(11):1267-1272.
[4] 蔡长福,刘改秀,成仿云,等.牡丹遗传作图最适F1分离群体的选择[J]. 北京林业大学学报,2015,37(3):139-147. DOI: 10.3969/j.issn.1001-7461.2015.04.21.
CAI C F,LIU G X,CHENG F Y,et al. Selecting optimal F1 segregation population for genetic linkage mapping in tree peony[J]. Journal of Beijing Forestry University,2015,37(3):139-147.
[5] 庞利铮,成仿云,钟原,等. 紫斑牡丹关联分析群体的表型分析[J]. 北京林业大学学报,2012,34(6):115-120. DOI: 10.13332/j.1000-1522.2012.06.013.
PANG L Z,CHENG F Y,ZHONG Y,et al. Phenotypic analysis of a association population for flare tree peony[J]. Journal of Beijing Forestry University,2012,34(6):115-120.
[6] 李林昊,张延龙,牛立新,等.秦岭地区‘凤丹’牡丹居群果期相关性状的表型多样性研究[J]. 西北林学院学报,2015,30(4):127-131. DOI: 10.3969/j.issn.1001-7461.2015.04.21.
LI L H,ZHANG Y L,NIU L X,et al. Phenotypic variations of fruiting-related traits of populations in Paeonia ostii ‘Feng Dan’ Native to Qinling Moutains[J]. Journal of Northwest Forestry University,2015,30(4):127-131.
[7] 李宗艳,张海燕. 黄牡丹表型变异及多样性研究[J]. 西北林学院学报,2011,26(4):117-122.
LI Z Y,ZHANG H Y. Morphological variation and diversity in populations of Paeonia lutea[J]. Journal of Northwest Forestry University,2011,26(4):117-122.
[8] 蔡长福. 牡丹高密度遗传图谱构建及重要性状QTL分析[D]. 北京:北京林业大学, 2015.
CAI C F. High-density genetic linkage map construction and QTLs analyses for phenotypic traits in tree peony[D]. Beijing: Beijing Forestry University, 2015.
[9] GUO Q, GUO L L, ZHANG L, et al. Construction of a genetic linkage map in tree peony(Paeonia Sect. Moutan )using simple sequence repeat(SSR)markers[J]. Scientia Horticulturae, 2017, 219:294-301. DOI: 10.1016/j.scienta.2017.03.017.
[10] WU J, CHENG F, CAI C, et al. Association mapping for floral traits in cultivated Paeonia rockii based on SSR markers[J]. Molecular Genetics & Genomics Mgg, 2017, 292(1):1-14. DOI: 10.1007/s00438-016-1266-0.
[11] 盖钧镒,章元明,王建康. 植物数量性状遗传体系[M]. 北京:科学出版社,2003:96-102.
GAI J Y,ZHANG Y M,WANG J K. Genetic system of quantitative traits in plants[M]. Beijing:Science Press,2003: 96-102.
[12] 张允楠,曹齐卫,李利斌,等. 黄瓜叶面积的主+多基因混合遗传模型分析[J]. 园艺学报,2015,42(5):897-906. DOI: 10.16420/j.issn.0513-353x.2014-1126.
ZHANG Y N,CAO Q W,LI L B,et al. Genetic analysis of leaf size using mixed major-gene plus polygene inheritance model in Cucumis sativus[J]. Acta Horticulturae Sinica,2015,42(5):897-906.
[13] 张飞,陈发棣,房伟民,等. 菊花花器性状杂种优势与混合遗传分析[J]. 中国农业科学,2010,43(14):2953-2961. DOI: 10.3864/j.issn.0578-1752.2010.14.014.
ZHANG F,CHEN F D,FANG W M,et al. Heterosis and mixed genetic analysis of inflorescence traits of Chrysanthemum[J]. Scientia Agricultura Sinica,2010,43(14):2953-2961.
[14] 唐海强,张 飞,陈发棣,等. 托桂型菊花花器性状杂种优势与混合遗传分析[J]. 园艺学报,2015,42(5):907-916. DOI: 10.16420/j.issn.0513-353x.2014-0433.
TANG H Q,ZHANG F,CHEN F D,et al. Heterosis and mixed genetic analysis of inflorescence traits of Anemonetyped Chrysanthemum[J]. Acta Horticulturae Sinica,2015,42(5):907-916.
[15] 陈四龙,李玉荣,程增书,等.花生含油量杂种优势表现及主基因+多基因遗传效应分析[J]. 中国农业科学,2009,42(9):3048-3057. DOI: 10.3864/j.issn.0578-1752.2009.09.005.
CHEN S L,LI Y R,CHENG Z S,et al. Heterosis and genetic analysis of oil content in peanut using mixed model of major gene and polygene[J]. Scientia Agricultura Sinica,2009,42(9):3048-3057.
[16] ZHANG S F,MA C Z,ZHU J C,et al. Genetic analysis of oil content in Brassica napus L. using mixed model of major gene and polygene[J]. Acta Genetica Sinica,2006,33(2):171-180. DOI: 10.1016/S0379-4172(06)60036-X.
[17] LI B,WU R. Heterosis and genotype × environment interactions of juvenile aspens in two contrasting sites[J]. Canadian Journal of Forestry Research,1997,27(10):1525-1537. DOI: 10.1139/97-110.
[18] 王秀刚,胡翠平,杨涛,等. 百合品种粉美与多安娜杂交F1代主要性状遗传分析[J]. 作物杂志,2012(4):90-93. DOI: 10.16035/j.issn.1001-7283.2012.04.038.
WANG X G,HU C P,YANG T,et al. Genetic analysis on main characters of F1 generation from hybridization of dark beauty and pollyanna[J]. Crops,2012(4):90-93.
[19] 祁娟,曹文侠,闫伟红. 披碱草属野生居群表型多样性及其与环境关系研究[J]. 西北植物学报,2013,33(5):1027-1033.DOI: 10.3969/j.issn.1000-4025.2013.05.029.
QI J,CAO W X,YAN W H. Phenotypic diversity and environment relations of wild Elymus populations[J]. Acta Botanica Boreali-Occidentalia Sinica,2013,33(5):1027-1033.
PDF(3246985 KB)

Accesses

Citation

Detail

Sections
Recommended
The full text is translated into English by AI, aiming to facilitate reading and comprehension. The core content is subject to the explanation in Chinese.

/